FEA of Structural Silicone of Warped Insulated Glass Units

Kedar A. Malusare

Stutzki Engineering

May, 2017

Conference Presentation 2017 Science in the Age of Experience

Stutzki Engineering – What we Do?

John Hancock Tower, Chicago

Tilt (94thFloor)

US Bank Building, Los Angeles

Glass Slide (70th Floor)

Brooklyn Academy of Music, New York.

Future of skyscrapers

Pittsburg Skyline

Chicago Skyline

Evolution Tower, Moscow

Turning Torso, Malmo, Sweden

Revolution Tower, Panama City

, Kuwait Trade Center, Kuwait Absolute World Towers, Mississauga, Canada

Insulated Glass Units

What is an insulated glass unit?

Section on an IGU

Connection Detail of an IGU

Cold Bent Glass

What is cold bent glass ?

Evolution Tower

Consequences of Cold Bending of Glass

Cold bending of glass puts the structural silicone in a state of stress

Purpose of Talk

- Organic shaped skyscrapers is the future *Incentive for cold bending*
- What is an Insulated Glass Unit
- What is meant by cold bending of glass
- What is Structural Silicone (Glass)
- What happens to the structural silicone in cold bending

Can the structural silicone hold the cold bent glass in shape ?

If the average stress is < 1.00 psi !

McKinney and Olive

Project in Dallas, TX

Building

Glass Wall

Serpentine Glass Wall

Rhino Modeling

Warping Distance in Rhino 3D/Grasshopper

Abaqus Modeling - Shells

Abaqus Model

Mean Reaction Force

Hand Calculations - Abaqus

$$\sigma = \frac{P}{A} = \frac{RF}{Area} = \frac{RF_{mean}}{spacing \ between \ nodes \ \times \ width \ of \ silicone}$$

Spacing between nodes = 0.25" Width of silicone = 1"

The mean reaction forces and the corresponding average stress for worst case lites is

Lite #	Mean Reaction force (lbs)	Stress (psi)	Allowable Stress (psi)
23	0.142	0.57	1.0
182	0.169	0.68	1.0

Abaqus Modeling - Solid

Solid Model

Modeling in RFEM

Modeling in RFEM

Hand Calculations - RFEM

	RF one ply	Total	Stress	Allowable Stress
Lite #	(lbs)	RF (lbs)	(psi)	(psi)
23	2.455	4.910	0.52	1.0
182	3.357	6.714	0.71	1.0

Comparison of Results

Lite Num		Allowable Stress		
INUIII	Abaqus (shell)	RFEM	Abaqus (solid)	(her)
23	0.57	0.52	0.61	1.0
182	0.68	0.71	0.76	1.0

The structural sealant is safe !

Conclusion

- Cold bending of glass
- Behavior of structural silicone in cold bending
- Use Abaqus (shell and solid) to compute average stress
- Use RFEM to compute average stress

Thank You.