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The complexity of the multiple failure mechanisms exhibited by unidirectional fibrous 

composites makes failure prediction a daunting challenge for the analyst. One approach to 

better identify failure mechanisms has been the use of volume average constituent stresses of 

the composite and directly predicting constituent failure. However, the total strain energy is 

not conserved by volume average constituent quantities (stresses and strains). To address this, 

this missing energy, termed interaction energy, was quantified as a function of loading, 

material properties, and fiber volume fraction. It was concluded that the stress/strain 

fluctuations of the matrix constituent were the major cause of interaction energy. 

Consequently, an energy conserving matrix stress metric was developed to attempt to improve 

failure load predictions. This energy consistent matrix stress was then used with an existing 

failure theory to predict failure loads of unidirectional fiber reinforced laminae subjected to 

biaxial and tri-axial load states. 
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1. Introduction to composite materials 

 

1.1 What are composite materials? 

Composite materials are defined as heterogeneous mixtures that are obtained by bonding two 

or more homogeneous phases. A careful observation would reveal that composite materials have 

always been present in nature.  Perhaps the most commonly used composite material that is 

present in nature is wood, which has long fibers of cellulose that provide strength that are held 

together by a much weaker substance called lignin which acts as the glue that bonds and holds 

the fibers in place (Rowell, 2012).  Other natural composites include bones, teeth and plant 

leaves.  Recent studies on spider silk have shown that it also is a composite consisting of a gel 

core enfolded by a solid hollow structure (Mukhopadhyay and Sakthivel, 2005; Vollrath et al., 

1996).  This suggests that Mother Nature has been far ahead of humans in exploiting the benefits 

of composites. The beginning of manmade composite materials can be traced back to the early 

Egyptian civilization c. 4000 B.C. (Herakovich, 2012).  They made papyrus paper by laying 

strips from the fibrous papyrus plant into two layers with each layer at right angles to the other. 

In addition, they made bricks from mud and then reinforced them with straw to provide strength 

(Nicholson and Shaw, 2000).  Over time other manmade composite materials like concrete and 

papier-mâché were produced and used all over the world.  In 1939, continuous glass fibers were 

produced commercially (Knox, 1982) for high temperature electrical applications . After two 

more decades fibers from boron (Talley, 2004) and carbon (Timot, 1961) were produced. The 

history of modern composite materials thus begins in the second half of the 20th century when 

lightweight fibers were embedded in polymeric resins to obtain novel materials having superior 

material properties and durability.  
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1.2 Advantages of fibrous composite materials 

Compared to conventional homogeneous metals, fibrous composites offer many advantages 

that make them attractive alternatives for designers to consider. Unquestionably, the most cited 

advantage of fibrous composites is their high specific stiffness and high specific strength as 

compared to conventional engineering materials. These properties translate into significant 

improvement in performance and reduction in consumption of energy. Unlike isotropic 

engineering materials like metals, properties of composites are often anisotropic. As a result 

composite materials can be designed to have desired properties in one direction without having 

to overdesign in other directions, which leads to significant weight savings.   Use of composites 

also increases fatigue life and corrosion resistance of final products (Herakovich, 2012). Due to 

these advantages composite materials have found applications in various industries like 

aerospace, automotive, sports, wind energy, and athletic and recreational equipment.   

 

1.3 Unidirectional fiber reinforced polymers 

Unidirectional fiber reinforced polymers (UD FRPs) are a special class of composite 

materials that are produced by embedding long, lightweight fibers in a polymeric resin called the 

matrix. The most commonly used fibers include glass and carbon/graphite which are inlaid in 

thermoset epoxies. A unidirectional lamina, the most basic form of continuous fiber reinforced 

polymers is shown in Fig. 1. The lamina or ply is a flat arrangement of unidirectional fibers in a 

matrix. The fibers are the principal load carrying entities and are generally very strong and stiff 

as compared to the matrix. The matrix provides support and protection to the fibers. Another 

important function of the matrix is to provide a means of distributing load among and 

transmitting load between the fibers. The stiffness and strength of the lamina in the fiber  
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direction is typically much greater than in the transverse directions. Generally, the properties of a 

unidirectional lamina are orthotropic, with different properties in the material principal 

directions. The three-dimensional elastic constants for an orthotropic unidirectional lamina 

consist of the following independent in-plane and through thickness properties: 

1312231312321
,,,,,,, GGGEEE  and 

23
  where 1, 2 and 3 represent the three mutually independent 

material directions. It is usually assumed that a unidirectional fiber reinforced lamina can be 

treated as being transversely isotropic which reduces the independent elastic constants to five 

since
32

EE  ,
2312

GG  , 
1312

   and  
23223

12  EG . Transverse isotropy also reduces the 

independent strength values to six as compared to nine for fully orthotropic materials. These are 

longitudinal and compressive strengths CT
SS

11
, , transverse tensile and compressive strengths

CT
SS

22
, , longitudinal shear strength 12

S and transverse shear strength
23

S . In practical 

applications, laminates with fibers oriented in only one direction are a rarity. Even though 

unidirectional laminates (fibers oriented only in one direction) are extremely strong and stiff in 

 

 

Figure 1: Unidirectional lamina 
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the fiber direction, they are very weak in the transverse direction and under shear loads because 

the load is carried by the much weaker polymer matrix. In order to make the final product 

stronger in the non-fiber directions, unidirectional laminae with fibers oriented in different 

directions are stacked on top of one another and the final layup is called a composite laminate as 

shown in Fig. 2. The resulting laminates are much stronger in the non-fiber directions and also 

have a higher shear load carrying capacity than their constituent laminae considered individually. 

 

 

 

 

Figure 2: Synthesis of a laminate from individual laminae 
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1.4 Failure of unidirectional fiber reinforced polymers 

Failure in unidirectional (UD) fiber reinforced polymers may occur due a variety of 

mechanisms at the constituent level including: fiber fracture, fiber buckling (kinking), fiber 

splitting, fiber pullout, fiber/matrix debonding, matrix cracking and matrix yielding. Fiber 

fracture involves breaking of the continuous fibers into two or more distinct segments and is the 

most catastrophic of failure mechanics since the fibers are the primary load-carrying agents in 

UD fiber reinforced polymers. This type of fiber failure is typically due to tensile stress in the 

fiber direction. Fiber fracture accompanied by fiber/matrix debonding causes fiber pullout. Axial 

compressive loading causes buckling of the fibers. Matrix cracking results from transverse or 

shear loads that exceed the strength of the matrix. Since UD fiber reinforced polymers are widely 

used in many applications it is very important to understand composite failure mechanisms to 

improve safety and reliability of composite products. The majority of failure theories analyze a 

composite laminate on a ply-by-ply basis. These theories try to predict the failure of one of the 

plies of the laminate which is termed as first ply or initial failure after which, the properties of 

the failed lamina are degraded such that its load carrying capacity is significantly decreased and 

the remaining un-failed laminae carry more loads. Final or catastrophic failure occurs when all 

the laminae of the laminate have failed and the laminate can no longer support any load. Based 

on the type of quantities that the failure methodologies use, they can be classified into 

mesomechanics based or micromechanics based. Mesomechanics based failure techniques use 

quantities (stresses/strains) that are averaged over the entire volume of the lamina to assess 

failure. A major drawback of using volume average lamina quantities is that they do not 

accurately represent the true stress/strain state in the constituents of the lamina. As shown in Fig. 

3 a composite lamina was subjected to a transverse load of 40 MPa, which generated stresses in 
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the fiber and matrix constituents. The volume average stress in the transverse direction in the 

fiber constituent is about 46 MPa and is about 32 MPa in the matrix constituent. Moreover, the 

stresses in the longitudinal and the through thickness directions in the constituents was non-zero  

 

 

even in the absence of such volume average stresses in the lamina. These stresses are self-

equilibrating and so do not appear on the lamina scale. This suggests that volume average 

constituent stresses as opposed to volume average lamina stresses are much more accurate in 

describing the true stress/strain state in the constituent. Since failure of a lamina initiates at the 

constituent level, it is important to predict failure of the constituent to assess failure of a lamina. 

Moreover, since constituent level stresses more accurately describe the stress/strain state in the 

 

 

 

Figure 3: Difference in volume average lamina stresses and constituent level stresses 
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constituents, volume average constituent level stresses are a better choice than lamina-averaged 

stresses for failure prediction. 

 

1.5 A Representative Volume Element (RVE) 

In real microstructures of unidirectional fiber reinforced composites, fibers are distributed 

randomly in the matrix. Figure 4(a) shows an SEM image (De Oliveira et al., 2009) with the 

fibers colored gray that are distributed randomly in the matrix which is colored black. In the 

theoretical analysis of composite materials, a Representative Volume Element (RVE), also called  

 

a unit cell, can be defined as the smallest volume over which the measurements of average stress 

and strain and properties like fiber volume fraction, moduli etc. will yield a values that are 

representative of the whole of the composite (Hashin, 1983; Hill, 1963). For the work in this 

thesis, it was assumed that the fibers were packed in a hexagonal array in the matrix as shown in 

Fig. 4(b) and a Representative Volume Element (RVE) of this idealized microstructure as shown 

in Fig. (c) was used to study the behavior of unidirectional fiber reinforced composites.  To 

produce homogeneous fields, the RVE was subjected to periodic boundary conditions (Appendix 

     
                (a)                          (b)       (c) 

Figure 4: Idea of a Representative Volume Element 
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A). The use of an RVE with hexagonal fiber packing not only offered significant reduction in 

computational costs but provided similar volume average quantities as compared to an RVE with 

a random distribution of fibers.   

 

1.6 Distribution of stresses and strain in the constituents of a composite material 

Figure 5 shows comparison of volume average stresses in the RVEs of a homogeneous 

material like steel and an in-homogeneous composite material consisting of fibers made of  

carbon that are embedded in an epoxy matrix.  Both the RVEs were subjected to a transverse 

load of 10 MPa and volume average stresses were computed. The volume average stress in the  

 

(a) Homogeneous       (b) Composite 

                                         material                     material  

 

Figure 5: Comparison of volume average stresses in a       

homogeneous and a composite material 
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load direction in the homogeneous material equals the applied load but for the in-homogeneous 

material, the volume average stress in the load direction is different for the two constituents of 

the composite material.  A more careful observation of the stress state in microstructure as shown 

in Fig. 6 reveals that even in the constituents, the actual stresses in the load direction are not 

constant as suggested by the volume average constituent stresses. The volume average stresses  

 

are also not able to capture the fluctuations in the through thickness direction as shown in Fig. 7 

which may play a role in promoting failure. Thus we can conclude that volume average  

 

 

Figure 6: Comparison of constituent volume average stresses and the actual distribution of 

stresses in the RVE 
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constituent quantities do not acknowledge these fluctuations and as a result, the strain energy 

computed from the constituent volume average quantities may not account for all the strain 

energy of the composite which raises a question of their accuracy in failure load predictions.  

 

 

 

 

 

 

Figure 7: Fluctuation of shear stress in the through thickness 

direction 
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1.7 Objective 

The thesis of this work is that an energy consistent constituent -level stress metric exists that 

accounts for stress fluctuations within each constituent and can be used for failure prediction. 

The goal of this work is to test this hypothesis and, if the stress metric exists, to develop a 

method for computing it and using it to predict constituent-level failure in composites. 
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2. Literature review 

2.1 Early approaches for predicting failure loads of composite materials  

 A failure theory is a methodology that is used to predict the conditions under which 

materials fail when subjected to various types of loads. In mathematical terms, a failure theory is 

expressed in the form of an inequality and failure of the material is said to occur when one 

equality is satisfied. The concept of a failure theory is better explained by considering the 

example of von Mises failure criterion which can be expressed as  

   

     

1
2

222





y

IIIIIIIIIII

S



       (2.1) 

where 
I , 

II  and 
III  are principal stresses and yS  is the uniaxial yield strength of the 

material.  According to the von Mises failure criterion, a material fails when Eq. (2.1) is 

satisfied. Since it assumes the materials to be homogeneous and isotropic, it can be applied to 

conventional engineering materials like metals. However, since composites are in-homogeneous 

and highly anisotropic, the von Mises failure criterion cannot be directly applied to these 

materials. Fibrous composites exhibit a range of complex failure behaviors and a variety of 

theories have been proposed to predict their failure. The maximum stress failure criterion is the 

earliest and one of the simplest failure theories that was applied to predict the strength of 

composites (Burke, 1983; Gerstle and Reedy, 1985; Nahas, 1986). It can be expressed as  

     1
i

i

S


          (2.2) 
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where i =11,22,…23,  i  is the stress in  i - direction and iS is the strength in i - direction. It is a 

non-interactive failure theory that is used to assess failure for a composite ply. According to this 

theory, a composite ply fails when the magnitude of stress in any direction exceeds its 

corresponding limit in that direction. This theory evaluates the failure state of the composite 

lamina based on a single value of stress in that lamina and does not take into consideration the 

state of multi-axial loading or the effects of the combinations of different stress components on 

the onset of failure. Although, the maximum stress failure criterion is capable of distinguishing 

between various lamina failure modes, it cannot explicitly separate fiber and matrix constituent 

failure. The non-interactive nature of the theory undermines its accuracy for predicting failure 

loads of composite materials under a multi-axial state of stress.  

 The maximum strain failure criterion is identical to the ‘maximum stress’ failure criterion 

except that the former accounts for some of the interactions between the stresses that are 

attributable to the Poisson’s effects in the material (i.e., stresses in the fiber and through-

thickness directions will affect the strain in the transverse-direction). It can be expressed as  

      1
max


i

i




         (2.3) 

where i =11,22,…23,  i  is the strain in i - direction and max

i is the maximum allowable strain in 

i - direction. The ‘maximum strain’ theory, as the name suggests, evaluates the state of failure of 

a lamina based on strains in that composite lamina. Even though both the failure criteria are 

simple and may sound primitive, they are often used either in their original or modified forms by 

many structural analysts today.  
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 Non-interactive failure criteria like the maximum stress and maximum strain assess 

failure based on a single component of stress and strain respectively. However, under a 

biaxial/triaxial load state, the stress components may interact in which case the non-interactive 

failure theories may overpredict the failure loads. Gol’denblat and Kopnov (Gol’denblat and 

Kopnov, 1965) were one of the first to suggest the use of a quadratic interactive or tensor 

polynomial failure criteria with the use of stress tensors for glass reinforced plastics. For the first 

time a failure theory considered interactions of various stress components of the lamina to 

evaluate damage in composites. Tsai-Wu (Tsai and Wu, 1971) adopted a similar approach and 

came up with a simplified equation similar to Gol’denblat and Kopnov's which can be expressed 

as  

     1 jiijii FF           (2.4) 

where ;6,..2,1,, kji  iF  and ijF  are strength tensors. Their quadratic, interactive, stress-based 

failure criteria used lamina level stress to determine the loads at which a composite ply fails. 

Lamina strengths were used to determine coefficients of stress components. However, neither of 

the two theories could distinguish between lamina failure modes or between fiber or matrix 

constituent failure.  Moreover, neither theory was based on actual physical phenomena.  With the 

availability of new experimental test data, there arose a need for failure theories that were not 

completely empirical but also had some physical significance.  

 Hashin (Hashin, 1980) proposed a stress-based failure criteria for composite materials 

that considered a multi-axial stress state for matrix dominated failure modes and a uniaxial stress 

state in the fiber direction for fiber dominated failure modes which can be expressed as  
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Fiber failure in tension  1

2

12

12

2

11

11 
















 SS





        (2.5) 
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where ij is the stress component on the i -coordinate surface in the j -direction, 


ijS and 


ijS are 

tensile and compressive strengths respectively and  is a user-specified parameter. Hashin, 

similar to his predecessors, used lamina level stresses to predict failure in a composite ply. The 

theory identified four different modes of failure of a composite ply: tensile fiber failure, 

compressive fiber failure, tensile matrix failure and compressive matrix failure. A major 

drawback of this theory is the need to specify an independent parameter to determine fiber or 

matrix tensile failure in the ply which has to be determined from experimental data. Thus in the 

absence of any experimental evidence, this value may be arbitrarily chosen between an allowable 

range of 0 to 1 which makes accuracy of ‘blind’ predictions made by the theory questionable. 

 Christensen (Christensen, 1997) also formulated a failure criteria which used lamina level 

stresses to identify failure in composite plies which can be expressed as  
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Matrix failure criterion  
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The theory recognized failure as either fiber or matrix dominated. Unlike Hashin, Christensen 

considered multi-axial stress state for both fiber and matrix constituent failure. His theory did not 

involve an independent parameter that required correlation with test data and yet was general 

since it provided failure mode predictions for both the fiber and matrix constituents. Over time 

numerous other failure theories were proposed but none of the existing failure theories could 

provide accurate and meaningful predictions for the entire spectrum of loadings encountered in a 

composite structure. To confirm the then current state-of-the of predicting failure and damage in 

fiber reinforced polymers, Hinton and Soden launched a study called the 'World Wide Failure 

Exercise' (WWFE) (Hinton and Soden, 1998). This failure benchmark was aimed at comparing 

failure predicting capabilities of various leading composite failure theories from around the 

world for a variety of experimental test data. The first failure exercise was deemed a success and 

was then followed by two other exercises (Hinton and Kaddour, 2012; Kaddour et al., 2013). The 

text in the following sections contains a brief discussion of some of the important failure 

methodologies from the First and Second World Wide Failure Exercises.    
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2.2 World Wide Failure Exercise – I  

 The first World Wide Failure Exercise (WWFE-I) contains a detailed assessment of 

nineteen failure methodologies for predicting the deformation and failure response of polymer 

composite laminates when subjected to complex states of stress. Of all the nineteen failure 

techniques, the theories of Zinoviev(Zinoviev et al., 1998, 2002), Bogetti (Bogetti et al., 2004a, 

2004b), Puck (Puck and Schürmann, 1998, 2002), Cuntze (Cuntze, 2004; Cuntze and Freund, 

2004) and Tsai (Kuraishi et al., 2002; Liu and Tsai, 1998) were ranked highest with regards to 

accuracy of failure prediction (Soden et al., 2004). These leading theories along with some other 

micromechanical failure techniques from WWFE-1 are discussed in the following text. 

 Zinoviev (Zinoviev et al., 1998) used a non-interactive maximum stress failure criterion 

to determine failure mechanisms and took appropriate post-initial failure action. He used ply 

level stresses to predict failure loads on the lamina. Since the theory is based on the maximum 

stress criterion, it is not able to distinguish between various constituent-failure modes. The post-

initial failure degradation model involved a gradual drop in the properties of the lamina. The 

final elastic and the shear moduli of the damaged lamina were degraded to a fraction of the 

original moduli depending on the strains on the laminate. The non-interactive nature of the 

failure criteria led to over-prediction of ultimate loads for certain loading combinations.  In spite 

of assuming linear-elastic material properties, the stress-strain predictions of the theory were in 

close agreement with test data. The theory failed to predict the observed large deformations in 

one of the test cases and predicted an unrealistic open failure envelope in another test case. The 

Zinoviev theory used a simple maximum stress failure criterion but due to a well-controlled 

degradation model, the theory performed very well overall and appeared to be one of the best 

theories of the exercise.  
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 Bogetti (Bogetti et al., 2004a) used a non-interactive maximum strain failure criterion to 

obtain failure envelopes for the available test data but unlike Zinoviev, Bogetti considered the 

non-linear behavior of the lamina under shear loads. To simulate progressive failure, the 

elastic/shear modulus of the failed lamina was set to zero and resultant loads were transferred to 

the un-failed laminae. Like Zinoviev's theory, this theory is also not capable of separating the 

various constituent-failure modes. The theory over-predicted the transverse compressive strength 

of one of the unidirectional laminae. For the same test case, the predictions in the biaxial tension 

and compression quadrants were much higher as compared to other theories. The theory gave 

good initial predictions for the non-linear stress-strain curves of multi-directional laminates. 

Owing to its simplicity and capability of predicting the wide range of test data features, it was 

ranked higher than other theories.  

 Puck's failure theory (Puck and Schürmann, 1998) is one of the most sophisticated 

theories of the failure exercise. It is an interactive failure theory which is able to differentiate 

between fiber and matrix constituent failures. Puck used both stresses and strains of the lamina as 

well as constituent properties of the lamina to assess failure. This failure theory has two fiber 

failure modes, the first being longitudinal tensile failure and second being longitudinal 

compressive failure. For the matrix constituent, Puck's theory provides three different kinds of 

modes, also known as 'inter- fiber failure modes'. The three modes which are termed A, B and C 

are distinguished by the orientation of fracture planes relative to the unidirectional fibers. It must 

be noted that lamina level properties were used by Puck to evaluate failure in individual 

composite plies. Progressive damage was achieved by a gradual degradation of the properties of 

the failed lamina. The final elastic and shear moduli and the Poisson’s ratio of the failed lamina 

were assumed to be a fraction of the original lamina properties depending on the stress on the 
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laminate. The theoretical failure envelopes and stress-strain curves predicted by the theory were 

in very close agreement with the experiments except where large non-linear deformations were 

observed.  Puck’s failure theory has a large number of parameters to be determined which makes 

calibration very difficult.   

 Cuntze's (Cuntze, 2004) failure theory bears a strong resemblance to the failure modeling 

used by Puck but comparatively has fewer parameters which makes calibration easier. He used 

lamina level stresses to predict failure of composite plies. The theory recognized five failure 

mechanisms: Longitudinal tensile and compressive fiber-dominated failures and three matrix 

dominated failure modes also called 'inter-fiber failure modes'. The maximum stress criterion 

was used to assess failure state of the fibers. Unlike Puck, Cuntze assumed interaction between 

various failure mechanisms due to some probabilistic effects. The degradation of properties of 

the matrix constituent was based on experimentally obtained non-linear stress-strain curves of 

the lamina. The theory performed very well overall and provided quite accurate predictions for a 

variety of test data.  

Liu and Tsai (Liu and Tsai, 1998) used Tsai’s well know interactive failure criterion 

(Tsai and Wu, 1971) to predict strength of composites in the first World Wide Failure Exercise. 

After initial failure had occurred, they degraded the properties of the isotropic matrix by 85% 

and the effective properties of the failed lamina were computed using micromechanics. Their 

theory described the failure envelopes for unidirectional lamina better than any other theory. 

However, the theory predicted an enhancement in strength under compression-compression 

biaxial loading which was not verified due to lack of experimental test data.  The predicted initial 

failure stresses for multi-directional laminates were in poor agreement with experimental data 

but the predicted shapes of the final failure envelopes agreed quite well with the experiments. 
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Owing to the assumption of linear elasticity, their theory could not predict the large non-linear 

strains observed in the test cases where high lamina shear was involved. Overall, due to its 

simplicity and good failure predicting capabilities, the Liu and Tsai failure theory was one of the 

best theories of the exercise.  

 Overall, approximately half of the theories of the First World Wide Failure Exercise 

relied on micromechanics in their formulation. Chamis’s failure theory (Gotsis et al., 1998) used 

relations based on micromechanics to predict properties of the lamina from properties of its 

constituents using a computer code called ‘Integrated Composite Analyzer (ICAN).  ICAN 

required constituent level properties to compute several lamina level properties which were then 

used to assess failure using a modified distortion energy criterion. The computed lamina level 

properties like ply-stress components, ply-strengths, normal moduli of the ply and the Poisson’s 

ratio of the ply were used to predict failure of the lamina.  Another computer code ‘Composite 

Durability Structural Analysis’ (CODSTRAN) was used to degrade constituent properties after 

first ply failure and eventually predict catastrophic failure in multi-ply laminates. It must be 

noted that even though a simple modified distortion energy theory was used to assess failure at 

the lamina level, the process of obtaining the lamina properties using constituent properties was 

very complicated. For example, the ply-stress components were computed using an expression 

that contains more than fifteen terms. Moreover, the failure criteria used lamina level stresses as 

opposed to constituent level stresses to assess failure and so this technique failed to take full 

advantage of the power of micromechanical modeling. The Chamis failure theory did not 

explicitly provide the mode of failure but a close examination of the terms in the criterion can 

reveal if the damage is due to matrix or fiber constituent failure. The post initial degradation 

model replaced the modulus of the matrix to a negligible value after initial failure and the 
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resultant properties of the failed lamina were computed using micromechanics relations. The 

failure predictions for unidirectional laminae agreed with the experimental evidence but were 

very conservative for multi-directional laminates indicating a problem in post-initial failure 

modeling.  The theory was not able to predict the observed nonlinear stress-strain curves. 

Chamis’s failure theory is very complicated and involves a large number of variables making it 

difficult to work with. Moreover, the predictions were not as accurate as other theories dues to 

which it was ranked lower than the leading failure theories.  

Huang’s theory (Huang, 2004), is also micromechanics based and combines ideas like 

bridging model, plasticity and generalized maximum stress theory into a single failure modeling 

technique. The model consists of ‘bridging matrices’ that relate constituent level stresses to 

lamina level stresses. The various terms of these matrices were computed using both lamina and 

constituent level properties: fiber volume fraction, elastic and shear moduli, and Poisson’s ratio. 

Fiber and matrix level stresses were then used to compute maximum and minimum principal 

stresses in the constituents and an equivalent stress was determined for each of the constituent 

using these principal stresses. The composite lamina was assumed to have failed if any of the 

two (fiber or matrix) equivalent stresses reached an ultimate stress value that corresponded to the 

strength of the constituent.  For post initial failure modeling, Huang replaced all the constituent 

properties with a zero and assumed that the failed lamina did not take carry any load after it had 

failed. The theory predicted large values for uniaxial transverse tensile and shear strengths for 

the unidirectional laminae which differed significantly from the experimental data. The 

predictions of final strengths and deformation of multidirectional laminates was very low for 

some loading configurations. A unique feature of this methodology was the use of plasticity flow 

theory (Prandtl – Reuss flow theory) while calculating deformation and loads on the matrix 
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constituent enabling Haung to show matrix yielding while predicting failure loads. Overall, 

Haung’s theory seems to be quite mature but needs improvement to enhance the assessment of 

failure.  

Mayes and Hansen (Mayes and Hansen, 2004) used a failure theory that expressed the 

failure state of the composite material in terms of transversely isotropic stress invariants of the 

volume average stresses of the constituents. Their theory assumed that damage in a composite 

lamina begins at the constituent level which is why Mayes and Hansen used constituent level 

stress and strain data to predict failure of a constituent (fiber or matrix). A finite element code 

based on the Multicontinuum theory (Garnich and Hansen, 1997) was used to extract stress and 

strain field data for constituents of the composite. The theory had two separate criteria, one for 

fiber and the other for matrix constituent failure. The failure criteria are composed of stress 

invariants with appropriate coefficients that can be determined from composite strength data. 

Since it is very difficult to obtain some of constituent strengths experimentally, Mayes and 

Hansen used a numerical technique to obtain the same.  Their degradation model employed a 

discrete reduction in the properties of the failed lamina by reducing all the moduli of the 

constituents to near zero values.  The theory performed moderately well in predicting 

unidirectional lamina failure enveloped but failed to predict the maximum shear stresses 

observed in experiments under combined direct and shear loading. In spite of being an 

interactive stress based theory, the predicted failure envelope for biaxial tension and compression 

test was similar to that of non-interactive theories.  This was due to the assumption that 

composite failure in the fiber direction is fiber dominated which led to neglecting the matrix 

constituent stresses in the fiber direction. Even though the final failure stresses predicted by their 

theory for multi-directional laminates were sometimes very low as compared to experiments, the 
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initial failure strengths of the same laminates were in better agreement with the test data.  The 

stress-strain curves were also truncated at much lower strains that the final strains observed in 

experiments. Thus Mayes and Hansen tried to solve the complicated problem of composite 

failure prediction using a novel approach and have seemed to have paved the path for other 

researchers to look at constituent level behavior for assessing composite failure.  

Some theories from WWFE-I were not completely based on micromechanics but used 

some properties of the constituents to predict final failure loads. Hart-Smith’s theory (Hart-

Smith, 2002) used constituent properties (fiber volume fraction, elastic moduli and Poisson’s 

ratios of the fiber and matrix constituents) to compute final failure strains required for obtaining 

failure envelopes in the strain plane. These strain envelopes were then converted into appropriate 

failure stress envelopes.  Rotem's failure technique (Rotem, 1998) used elastic modulus and 

strengths of the matrix constituent in his matrix failure criterion.  

 

2.3 World Wide Failure Exercise – II 

 The second world wide failure exercise was set up to assess the maturity of failure 

criteria for predicting the failure strengths and deformation of unidirectional fiber reinforced 

composite materials subjected to tri-axial load states.  A total of twelve failure theories were 

employed to solve twelve test cases. Of the twelve different methodologies, the failure theories 

of Carrere (Carrere et al., 2012, 2013), Cuntze (Cuntze, 2012, 2013), Pinho (Pinho et al., 2012, 

2013) and Puck (Deuschle and Kröplin, 2012; Deuschle and Puck, 2013) were ranked highest 

due to their accurate predictions of failure strength and stress-strain curves of unidirectional 
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laminae and multidirectional laminates (Kaddour and Hinton, 2013).  These failure theories and 

some important micromechanics based theories are discussed in the following text. 

 Carrere (Carrere et al., 2012) employed a micromechanical-based hybrid mesoscopic 

(MHM) 3D approach where a failure mechanism was formulated in terms of physical principles 

and introduced micromechanical aspects at the mesoscopic scale. His failure theory considered 

non-linear material behavior of the lamina and distinguished between two fiber failure modes 

and two matrix failure (called Inter Fiber Failure) modes.  He used various parameters which 

described damage at the micro-scale along with lamina based quantities to predict first ply 

failure. Post initial failure modeling employed a gradual reduction in the properties of the failed 

lamina again with the use of parameters which describe the effect of damage at fiber/matrix 

constituent level.  The failure model was able to capture the important features over the wide 

range of test data. It was one of the two theories that were able to predict fiber failure due to fiber 

kinking under compressive loads. Carrere’s failure theory is very complicated and demands a lot 

of effort on the part of the analyst to provide meaningful results. However, Carrere was able to 

formulate a physically sound failure technique by taking the advantage of micromechanics and 

lamina based quantities which can prove to be a useful tool in understanding the failure behavior 

of fiber reinforced polymers.  

 Cuntze’s failure theory (Cuntze, 2012) was established on the modeling capability called 

‘Failure Mode Concept (FMC)’.  Based on nonlinear analysis, Cuntze’s used an in-house 

MathCad code to explain the behavior of composite materials under triaxial load states.  The 

theory incorporated five FMC modes of failure: two fiber failure modes and three matrix failure 

modes.  The fiber failure modes employed the maximum stress failure criterion and the matrix 

failure modes used the stress invariants of the transversely isotropic lamina to asses and predict 
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failure of the lamina.  After initial failure, the theory assumed softening behavior of the failed 

lamina and the effective moduli of the failed lamina were computed using stresses and available 

stress-strain data of the laminate.  Unlike Carrere, Cuntze employed a much less rigorous 

approach to describe the failure behavior of composite materials.  The predictions of the theory 

were in good agreement with the experimental evidence.  

 Deuschle and Kröplin (Deuschle and Kröplin, 2012)  used the same mature failure theory 

which was employed by Puck (Puck and Schürmann, 1998) in the first World Wide Failure 

exercise with slight modifications to predict failure loads and deformation of fiber reinforced 

composites under tri-axial stress states.  Originally, the theory was formulated based on the 

assumption that matrix failure can occur on planes parallel to the fibers which is indeed the case 

in UD composites.  However for pure matrix, fracture may occur in a plane at any orientation 

and to capture this behavior, two more matrix failure modes were introduced.  Overall, the 

predictions of their failure theory were in good agreement with the test data from the twelve test 

cases.  

Pinho (Pinho et al., 2012) used physically-based constitutive modeling to formulate his 

theory and like all the other participants considered non-linear material properties of the lamina 

for predicting failure in fiber reinforced polymers. His failure theory used lamina level quantities 

to assess failure and distinguished between fiber and matrix failure modes.  The fiber failure 

modes incorporated failure due to longitudinal tensile loads and fiber kinking/splitting due to 

compressive loads. A maximum stress failure criterion was used to predict fiber failure in 

longitudinal tension.  Pinho concluded from various experiments on FRPs under compressive 

loads that matrix failure next to misaligned fibers was one of the driving forces behind fiber 

kinking. His theory used transverse tensile stresses as well as in-plane and through thickness 
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shear stresses of the lamina to predict buckling of fibers.  Pinho computed the normal, transverse 

and longitudinal components of the traction in the fracture plane and used the same to predict 

matrix failure.  For propagating failure, Pinho reduced the components of the traction vector 

acting on the fracture plane to zero such that the all the load is carried by un-failed laminae in the 

composite.  Overall, Pinho’s failure theory performed very well as compared to other theories.  

Unlike, some theories of the exercise which ranked very high, Pinho’s theory is comparatively 

simple thus making it one of the best failure theories of the exercise.  

Tsai-Ha’s theory (Huang et al., 2012) in the second failure exercise is completely 

different than the failure methodology employed by Liu and Tsai (Liu and Tsai, 1998) in the first 

World Wide Failure Exercise. Huang et al. developed a new micromechanics based failure 

theory that used constituent level stresses to predict failure of a constituent. His model used a 

unit cell with hexagonally arranged fibers to extract ‘Stress Amplification Factors’ which relate 

lamina level stresses to constituent level stresses. The new approach was able to distinguish 

between two fiber failure modes, one matrix failure mode and one interface failure mode using 

constituent level stresses. The maximum stress failure criterion was used for predicting failure of 

fibers under longitudinal tensile and compressive loads. A modified distortion energy failure 

criterion was used to predict failure of the matrix constituent.  A quadratic failure criterion was 

proposed which used tractions on the interface to predict initiation of damage at the fiber-matrix 

interface. They never used the interface failure criterion assuming that the bonding between the 

fiber and the matrix was sufficiently strong such that separation of the fiber-matrix interface did 

not occur.  After initial failure of a ply, the matrix properties of the failed ply were degraded 

gradually depending on the stresses in the ply. The predictions of the theory were conservative 

for most of the test case and need several improvements. Even though Huang et al. explained the 



27 
 

use of the ‘Stress Amplification Factors’ to compute constituent level stresses from lamina level 

stresses, they have not explained the procedure in detail. Conservative predictions for the test 

case indicate that the theory may need a more robust progressive failure methodology.  In spite 

of all these drawbacks, their theory is very simple and appears to have potential to grow into a 

much more robust failure modeling technique.  

Nelson, Hansen and Mayes (Nelson et al., 2012) used a similar approach like the one in 

the first World Wide Failure exercise, in the second failure exercise with some major 

modifications to the matrix failure criterion and post initial failure modeling technique. They 

continued the use of constituent level stresses to predict failure loads on composites which were 

extracted from composite level stresses using a FE approach based on the Multicontinuum 

theory.  A new matrix failure criterion was proposed which now incorporated the matrix 

constituent stresses in the longitudinal (fiber) direction.  A coupling between shear and 

transverse compressive stresses was also added. The post initial failure approach adopted in the 

second failure exercise allowed gradual degradation of the properties of the matrix constituent. 

The modification of the matrix failure criterion has made calibration more difficult, as one of the 

invariants used in the criterion has no physical meaning.  The model predicted large and 

unbounded strengths in various test cases that were analyzed. Contrary to the predictions of other 

theories, the model predicted an open envelope under tension-tension case for isotropic matrix. 

Although the failure theory is not as complicated as other failure methodologies, it has a lot of 

room for growth since overall its predictions were not as highly ranked as the best theory of the 

exercise.  

In the second failure exercise, Haung (Zhou and Huang, 2012) used 3D laminate theory 

along with the original bridging model used in the first failure exercise to predict failure loads 
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and deformation of fiber reinforced polymers. Bridging matrices were used to compute 

constituent level quantities from lamina level quantities. The tensile failure criterion of the fiber 

and the matrix constituents was not changed but a new compressive failure criterion for the 

constituents was introduced.  This new failure criterion, which took into account the 

enhancement of lamina strength due to tri-axial compressive loading, used principal stresses of 

the constituents to predict their compressive failure.  In the new post initial degradation model, 

the modulus of the resin material in the failed lamina was reduced to one percent of its original 

magnitude. The modifications introduced by Haung in his failure theory did not improve its 

overall failure predicting capability.  

The majority of failure theories in the WWFEs used lamina level quantities to assess 

failure state of the composite.  Some of the theories were micromechanics based and used 

constituent level quantities to predict failure loads of the composite. The work in this thesis is 

primarily concerned with improving the measurement of volume average constituent level 

quantities that are used in failure modeling by micromechanical theories.  The new stress metric 

that was obtained could be used in conjunction with any of the micromechanical failure 

methodologies that use volume average stresses in evaluating failure.    
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3. Interaction Energy 

(The majority of this chapter has been accepted for publication in the AIAA Journal). 

 

Complex interactions in fiber reinforced composites between multiple failure 

mechanisms have made accurate failure prediction a daunting challenge. One approach to better 

identify failure mechanisms has been the use of volume average constituent stresses in the 

composite to predict the onset and outcome of failure in individual constituents. However, this 

approach is shown here to not conserve strain energy in the composite, which could potentially 

affect the accuracy of failure prediction under certain loading conditions. The focus of this 

chapter is to develop an expression for the discrepancy in strain energy, termed the interaction 

energy, and to numerically evaluate the influence of constituent properties, fiber volume fraction, 

and load combinations on the magnitude of this energy.  

 

3.1. Overview of volume average quantities used for composite failure load predictions 

The use of composite materials in the wind and aerospace industries has grown 

dramatically in recent years, with composites comprising 50% or more of Boeing’s 787 and 

Airbus’s A380. With this increase in use has come a greater demand for design tools that can 

accurately predict damage initiation and propagation, durability, and remaining life. This has 

proven to be quite challenging due the range of complex failure behaviors exhibited by 

composites. Unlike conventional homogeneous materials like metals, the constituent undergoing 

failure may switch rapidly and the failure mechanisms within each constituent can vary widely 

depending on the loading. At the lamina level, tensile loads parallel to the fiber direction may 
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cause both fiber and matrix fracture. Under transverse loading, Mode I matrix cracking or 

fiber/matrix debonding may occur in tension, with a shear matrix failure occurring in 

compression. At the laminate level, delamination may occur, which will substantially affect the 

distribution of stresses in each lamina. The result of this complexity has been a large number of 

proposed composite failure theories with no clearly superior choice.    

 The First and  the Second World-Wide Failure Exercises (WWFE I and WWFE II, 

respectively) have provided a much needed benchmark against which to compare the 

effectiveness of various composite failure theories for both glass- and carbon-fiber composites 

subject to complex loading configurations (Hinton and Kaddour, 2012; Hinton and Soden, 1998). 

One distinction among failure theories was the use of micromechanics in the prediction of 

failure, such that some measure of fiber and matrix constituent stresses were used to predict 

lamina failure rather than using lamina-level failure criteria to predict failure. Although none of 

the micromechanics based theories were judged in the benchmark exercises to exceed the 

performance of more established theories, they were assessed as evolving towards maturity 

(Kaddour and Hinton, 2013). The unique appeal of constituent-level failure theories is not simply 

in static failure prediction, but their potential for physics-based modeling and materials design 

efforts, such as the Materials Genome Initiative and Integrated Computational Materials 

Engineering. 

 The methods used to extract constituent stresses and strains from composite stresses 

typically utilize some form of a localization tensor to map composite stresses to constituent 

stresses, which may be evaluated at specific points (like peak stresses) or as volume average 

quantities. The use of constituent stresses at specific points is strongly dependent on the choice 

of representative volume element (RVE) for the composite microstructure. Any deviation from 
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the idealized structure may substantially alter the stress at a particular location. The use of 

volume average stresses is appealing because it is less sensitive to details of the microstructure; 

random fiber packing and idealized hexagonal fiber packing will yield nearly the same average 

constituent stresses and strains. However, the use of volume average constituent stresses and 

strains may not account for the total strain energy in a composite. For example, a careful 

inspection of the stress fields in a composite microstructure reveals the presence of shear stresses 

in the constituents even when the composite loading is purely transverse normal—these stresses, 

however, average to zero and therefore cannot be accounted for in any failure or material 

nonlinearity model. As a result, failure prediction under particular loading configurations may 

not be consistent with bulk constituent properties because a significant portion of the strain 

energy may be unaccounted for. The energy not accounted for when using volume average 

constituent stresses and strains is herein termed the interaction energy. To enhance physics-based 

composite failure prediction, all strain energy should be accounted for. The goal of this chapter is 

to provide a quantitative foundation for the development of constituent-level composite failure 

theories based on the conservation of strain energy across length scales. As such, the focus of 

this research is to quantify the magnitude of the interaction energy relative to the total strain 

energy for a variety of fiber volume fractions, matrix elastic properties, and complex multi-axial 

loading configurations. The reported results clearly indicate that a significant fraction of energy 

is unaccounted for under a variety of loading conditions in typical aerospace composite 

materials, but also suggest that this interaction energy could be readily incorporated into 

constituent failure criteria. 
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3.2. Theoretical Motivation 

This section focuses on establishing the equations that can be used to quantify the 

interaction energy. Consider a RVE of a composite material consisting of fiber and matrix 

phases. Let U denote the strain energy of this composite under an arbitrary load state. Assuming 

a linear elastic material, this energy can be represented as  
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Equation (3.1) can be readily written in terms of average composite properties (Sun and Vaidya, 

1996) 
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                                                         (3.2) 

where the terms in the brackets denote volume average quantities. Strain energy may be 

separated into contributions from the fiber and the matrix constituents 
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such that 
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where the superscripts f and m denote quantities for fiber and matrix, respectively. In contrast to 

using average lamina stresses, summing the strain energies of the constituents computed using 

constituent volume average stresses does not account for all of the strain energy in the 

composite. To quantify this interaction energy the strains in each constituent are written in terms 

of a mean value ij  plus a fluctuation ij
~ ; similarly, the stresses are also written as a mean 

value ij  plus a fluctuation ij~ .  

ijijij  ~                                                                 (3.6) 

ijijij  ~~                                                                (3.7) 

For the fiber, Eqs. (3.6) and (3.7) are substituted into Eq. (3.4) to obtain 
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Expanding Eq. (3.8) yields 
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which on further simplification gives 
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Because volume average quantities are constant and
f

ij~ and
f

ij
~ are local fluctuations with 

averages that are identically zero. The matrix contribution is derived in a similar manner to give 
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The strain energies in the fiber and matrix can then be written as  
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where f and f are the fiber and matrix contributions to the interaction energy density, 

respectively given by 
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The interaction energy U is thus related to the total strain energy and the energy computed 

from volume average constituent quantities via 
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where 

mmff VVU  .                                       (3.17)   
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Substituting Hooke’s law into Eq. (3.14) allows the interaction energy density to be written 

entirely in terms of strain fluctuations  
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where mnC  is the m,n component of the 6x6 fiber stiffness matrix. Assuming transverse isotropy 

and expanding Eq. (3.18) yields  
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The interaction energy density for the matrix can be similarly shown to be        
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Equations (3.19) and (3.20) quantify the interaction energy between fiber and matrix, but they 

contain a total of 18 terms. The focus of the subsequent modeling effort is to determine the 

significance of the interaction energy relative to the total strain energy, to investigate how the 

interaction energy may change as a function of loading and material properties, to evaluate the 

contribution of each of the 18 terms to interaction energy and to attempt to establish relative 

contribution of each constituent to the interaction energy. 
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3.3. Finite Element Modeling  

A finite element model was developed and studied using Abaqus™ to investigate the magnitude 

of the interaction energy as a function of fiber volume fraction, elastic moduli of the constituents, 

and varying loading conditions. For the purpose of analysis, a representative volume element 

(RVE) of a hexagonal fiber packing was modeled, as shown in Fig. 8. Periodic boundary 

conditions were applied on all RVE edges, faces, and corners. This was achieved by extracting 

nodes from the RVE after meshing, reordering them properly, and using equation constraints for  

 

 

 

 

Figure 8:  Representative volume element (RVE) with 

hexagonal fiber packing for fiber volume fraction of 0.6 
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the node sets. The axial direction of the fibers is defined as the 1-direction (longitudinal). Carbon 

fiber properties (AS4) reported by Sun (Sun and Vaidya, 1996) and shown in Table 1 were used 

for all simulations. The matrix was assumed to be isotropic with a Poisson’s ratio of 0.34. 

Table 1: Baseline material properties of the fiber 

Material Type  )(1 GPaE  )(2 GPaE  )(12 GPaG  
12  

23  

AS4 Transversely isotropic 235 14 28 0.2 0.25 

 

Three parametric studies were conducted. First, the fiber volume fraction was varied from 0.05 

to 0.85 with the matrix modulus was fixed at 1% of the fiber-direction fiber modulus,

GPaEm 35.2 . In the second study, the matrix modulus was varied from 1% to 120% of the 

fiber modulus in the fiber direction. (A matrix modulus of 0.0204×E11fiber roughly corresponds to 

epoxy 3501-6 (Em = 4.8 GPa).) Results for the modulus study were obtained for four different 

fiber volume fractions of 0.05, 0.25, 0.6 and 0.85. In both of these parametric studies, four 

unique composite loading states were examined: and. These loads were achieved 

 

 

Figure 9: Decomposition of biaxial load into its 

components 
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by fixing displacements of the RVE control nodes such that a strain of 0.01 was applied in each 

load case. In the third study, five types of biaxial loads were applied: ),( 3322  , ),( 2212  ,

),( 2312  , ),( 1312  , and ),( 2223  . These loads were applied such that they corresponded to 

the x- and y-components of the biaxial load represented as the radius of a circle as shown in Fig. 

9, with   varying from 0° to 180°.  

The two uniaxial loads required to generate the biaxial load state can be expressed as 

     




sin

cos





II

I
               (3.21) 

where MPa10  was the resultant biaxial load vector magnitude, and 
I  and 

II  are the 

corresponding uniaxial loads. For this third study, the matrix modulus and fiber volume fraction 

were held constant at 0.01702×E11fiber  (Em = 4.0 GPa) and 0.6, respectively. 

 

3.4. Results and Discussion 

As discussed above, three series of simulations were carried out to quantify the 

dependencies of the interaction energy on material properties, fiber volume fraction, and loading 

conditions: (i) constant matrix and fiber modulus with varying fiber volume fraction, (ii) varying 

matrix modulus for four different fiber volume fractions, and (iii) constant material and 

microstructure properties with varying biaxial loading conditions.  
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3.4.1. Effect of Fiber Volume Fraction on Interaction Energy 

Volume average quantities (stresses, strains and stiffness) of the composite were 

extracted from the model and then the total strain energy for the composite was calculated using 

Eq. (3.2). The volume average quantities (stresses, strains and stiffness) of the constituents were 

also extracted. Constituent strain fluctuations and average stresses and strains were computed 

and used in Eqs. (3.19) and (3.20) to give f and
m . The total interaction energy was computed 

using Eq. (3.17). The interaction energy fraction )/( UU was computed for all the fiber volume 

fractions and each load case. The properties of the RVE were transversely isotropic, thus only 

four (and not all six) load cases are unique. Figure 10 shows UU /  as a function of fiber 

volume fraction for each load case. Three features of these data are of particular interest. First, 

the interaction energy is strongly dependent on the load case and it can be a significant fraction 

of the total energy. It can be more than 30% of the total strain energy for longitudinal shear 

loading (shear-12), although it was negligible for unidirectional loading in the fiber direction 

(tension-11). Second, interaction energy increases with increasing fiber volume fraction, up to 

typical volume fractions. Finally, transverse tension (tension-22) and transverse shear (shear-23) 

show a peak at a fiber volume fraction of about 0.65, very close to typical fiber volume fractions 

in aerospace-grade composites.   
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To qualitatively understand these features consider stresses in an RVE with a fiber volume 

fraction of 0.6 subject to the four load cases. In case of longitudinal tension, shown in Fig. 11a, 

the stress distribution is uniform in each constituent throughout the structure, thus strain 

fluctuations are minimal. Consequently, as shown in Equations (3.19) and (3.20), f and
m , 

and correspondingly U , are nearly zero for this load case. In the case of longitudinal shear, 

shown in Fig. 11b, the stress fluctuation is largest. Consequently, the interaction energy is 

 

 

          Figure 10: Variation of interaction energy with fiber volume fraction 
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maximized for this case, as seen in Fig. 10. This result is critically important because it means 

that at a typical fiber volume fraction for aerospace grade composites (60%), volume average 

constituent stresses neglect nearly 30% of the distortion energy in the composite in shear. The 

transverse tension and transverse shear load cases are shown in Fig. 11c and Fig. 11d, 

respectively. For both cases the stress fluctuations are significant, so interaction energy will not   

 

 

Figure 11: (a) Stress plot for load case tension-11 (b) Stress plot for load case 

shear-12 

 (c) Stress plot for load case tension-22 (d) Stress plot for load case shear-23 
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be negligible. Stress distributions for longitudinal shear, transverse shear, and transverse 

tensionare quantitatively shown in Figure 12. The high probability densities at low strain values 

result from fiber strains, thus the fluctuations in fiber strain are small. The matrix strain 

distribution consists of the larger strain values. The distinction is shown in Fig.12 by enclosing 

fiber and matrix distribution in dashed lines. The matrix strain distribution is widest in 

longitudinal shear and smallest in transverse tension. Consequently, the interaction energy 

should be the least for transverse tension and the greatest for longitudinal shear— in agreement 

with Fig. 10. 
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Figure 12: Probability distribution function for strains for different load 

cases 
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An important observation to be made from these data is that the matrix strain distribution, and 

consequently the matrix strain fluctuation, is much broader and at much higher strains than the 

fiber strain distribution. This suggests that the small strain values of the fiber in conjunction with 

the even smaller strain fluctuations in fiber render the fiber a minor contributor to the interaction 

energy in the composite. To confirm this, the relative contribution of each constituent was 

examined. Figure 13 shows the relative matrix contribution to interaction energy plotted against 

fiber volume fraction for the four different load cases. The results are notable: up to typical fiber 

 

  

 

 

Figure 13: Variation of contribution of matrix to interaction energy 

with fiber volume fraction 
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volume fractions, the matrix accounts for vast majority of interaction energy. For a fiber volume 

fraction of 0.6, the matrix contributes almost entirety (more than 99%) of the interaction energy 

of the composite for longitudinal shear loading, the most significant load case. Even for 

transverse tension and transverse shear, matrix contribution to interaction is about 90%. This 

result is important because it permits the interaction energy contribution of the fiber to be 

neglected, such that augmenting matrix failure theories with interaction energies can be the focus 

of future failure prediction efforts. 

 Figures 14-22 show the contribution of the various terms in Eq. (3.20) to interaction 

energy of the matrix constituent. It can be seen that the contribution of terms  2111
~mmC  , 

 

 

Figure 14: Variation of contribution of  2111
~mmC  term to 

interaction energy of the matrix 
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Figure 15: Variation of contribution of  2222
~mmC  term to 

interaction energy of the matrix 
 

 

 

Figure 16: Variation of contribution of  2333
~mmC  term to 

interaction energy of the matrix 
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Figure 17: Variation of contribution of mmmC 2112
~~   term to 

interaction energy of the matrix 
 

 

 

Figure 18: Variation of contribution of mmmC 3113
~~   term to 

interaction energy of the matrix 
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Figure 19: Variation of contribution of mmmC 3223
~~   term to 

interaction energy of the matrix 
 

 

 

Figure 20: Variation of contribution of  2444
~mmC  term to 

interaction energy of the matrix 
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Figure 21: Variation of contribution of  2555
~mmC  term to 

interaction energy of the matrix 
 

 

 

Figure 22: Variation of contribution of  2666
~mmC  term to 

interaction energy of the matrix 
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mmmC 2112
~~     and mmmC 3113

~~    is always zero irrespective of fiber volume fraction and load 

case. The contribution of terms  2222
~mmC  and  2333

~mmC   to interaction energy of the matrix is 

always zero irrespective of the fiber volume fraction for shear loading in the longitudinal 

directions.  

 

3.4.2. Effect of Relative Matrix Modulus on Interaction Energy 

 In order to investigate the variation of the interaction energy with matrix modulus, the 

matrix modulus was varied from 1% to 120% of the fiber-direction fiber modulus. Results were 

obtained for four fiber volume fractions: 0.05, 0.25, 0.60, and 0.85. Figure 23 shows the 

variation of relative interaction energy with matrix modulus for the four unique load cases. Fig. 

23a shows the variation of interaction energy with matrix modulus in longitudinal tension. For 

this load case, the interaction energy for all volume fractions is negligible. For the other three 

load cases, shown in Fig. 23b-d, a general trend is observed: an initial increase in matrix 

modulus results in a decrease in interaction energy until a minimum is reached, after which 

additional increase in matrix modulus results in an increase in interaction energy. The minimum 

of the interaction energy occurs when the relevant fiber and matrix stiffnesses are the closest. For 

the load case in the transverse direction, shown in Fig. 23b, the interaction energy reaches a 

minimum when the matrix modulus is 5% of the fiber-direction fiber modulus, corresponding to 

a matrix modulus of 11.75 GPa, which is close to the fiber modulus in the transverse direction of  
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Figure 23: (a) Variation of interaction energy with matrix modulus in load case tension-11 (b) 

Variation of interaction energy with matrix modulus in load case tension-22 (c) Variation of 

interaction energy with matrix modulus in load case shear-12 (d) Variation of interaction energy 

with matrix modulus in load case shear-23 
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14 GPa.  For a load case of shear-12, shown in Fig. 23c, the interaction energy reaches a 

minimum when the matrix modulus is 30% of the fiber-direction fiber modulus, corresponding to 

a matrix shear modulus of 26.31 GPa, which is close to the fiber shear modulus in 12-direction 

of 28 GPa. For a load case of shear-23, shown in Fig. 23d, the interaction energy reaches a 

minimum when the matrix modulus is 5% of the fiber-direction fiber modulus, corresponding to 

a matrix shear modulus of 4.38 GPa, which is close to the fiber shear modulus in 23-direction of 

5.6 GPa. These results indicate that for near iso-stress loadings the interaction energy increases 

with increasing difference in the fiber and matrix modulus in the loading directions. 

   

3.4.3. Effect of Combined Loading on Interaction Energy 

 In actual application, a composite is rarely subjected to uniaxial stresses and so it is 

important to study the behavior of interaction energy under multi-axial load states. As discussed 

in sections 3.4.1. and 3.4.2, the interaction energy for tensile loading in the longitudinal is 

negligible. Thus it was not included in the study of combined loads. The fiber volume fraction 

and the matrix modulus were held constant at 0.6 and 4.0 GPa, respectively. The biaxial load is 

represented by the radius of a circle as shown in Fig 9, where   is the angle made by the radius 

of the circle with the x-axis which is varied from 0° to 180°.  

 Figure 24 shows the variation of interaction energy under five types of biaxial loadings: 

),( 3322  , ),( 2212  , ),( 2312  , ),( 1312  , and ),( 2223  . Under a biaxial longitudinal shear 

loading 1312    the interaction energy does not change, remaining constant at 27% of the total 

strain energy. This gives us an important metric for evaluating interaction energy under 
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combined longitudinal shear loading. For a particular fiber-matrix combination and fiber volume 

fraction, interaction energy for biaxial shear loading is always the same as that for pure  

 

 

longitudinal shear loading. Varying the ratio of 
12 to 13  essentially rotates the stress 

distributions in the RVE, but does not substantially change their relative quantitative values. 

When the RVE was subjected to a transverse normal ),( 3322  biaxial loading the interaction 

energy reached a minimum at 45°, corresponding to equal biaxial transverse loading. At this 

angle a nearly uniform distribution of strains and stresses in the constituents is observed, similar 

 

 

Figure 24: Variation of interaction energy with biaxial loads 
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to Fig. 11a, producing negligible interaction energy. In the remaining three cases, ),( 2312  ,

),( 2212  , and ),( 2223  , the maximum interaction energy occurs at 90°, which corresponds to 

a pure shear loading. This result is remarkable: any deviation from a pure shear loading reduces 

the interaction energy that would be computed. Thus, the composite shear loading in particular 

causes interaction energies to become significant, such that the interaction energy could be 

bounded by evaluating only a small number of load states. 

 

3.5 Summary and Conclusions 

Accurate failure prediction is critical in efforts to maximize the promising advantages 

offered by composite materials. This requires physics-based failure prediction models, which 

necessarily require accurate understanding of constituent stress and strain. The use of volume 

average constituent stresses and strains to predict failure is a computationally efficient first step 

toward this effort, but does not account for the entire strain energy in the composite. In this 

study, this missing energy, termed the interaction energy, was introduced and expressions to 

define it were derived. A series of parametric finite element studies were conducted to quantify 

the relative magnitude of the interaction energy for varying fiber volume fractions, matrix 

modulus, and loading conditions. Our results showed that for typical carbon-epoxy composites 

used in the aerospace industry the interaction energy may be as high as 30% of the total strain 

energy in the composite under shear loading, which is the load state yielding the highest relative 

interaction energy. Furthermore, for such systems the matrix constituent is the major contributor 

to interaction energy. This result is important for future efforts to enhance composite failure 

prediction because it suggests that focus be placed on matrix failure criteria augmentation. 
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4. Benchmarking of lamina failure tests from WWFE-I and WWFE-II with a three 

parameter micromechanics based matrix failure theory  

 This chapter presents an existing three parameter micromechanics based matrix failure 

theory and its benchmarking with lamina test data from well-known composite failure 

benchmarks ‘World Wide Failure Exercise-I’ (WWFE-I) and ‘World Wide Failure Exercise-II’ 

(WWFE-II) (Hinton and Soden, 1998; Hinton and Kaddour, 2012).  The WWFEs contain a 

detailed assessment of various leading theoretical approaches for predicting deformation and 

failure responses of polymer composite laminates under complex states of stress. The theoretical 

predictions were compared with one another and with experimental tests data. This chapter 

contains a detailed discussion of the Fertig failure theory which is followed by a brief discussion 

of the results and benchmarking against the available experimental test data from the WWFEs. A 

von Mises-maximum principal stress based matrix failure theory is also presented and is applied 

to one of the lamina failure test cases of the first World Wide Failure Exercise. 

 

4.1 Introduction 

For almost fifty years, accurate failure prediction of composites has been an overarching 

goal for both the scientists and engineers alike. This large span of time saw an abundance of 

failure modeling techniques introduced, which usually satisfy a particular set of data but fail to 

explain the generalized failure behavior of composites. This can be attributed to the complicated 

behavior of composites owing to their heterogeneous material properties and the large number of 

unknowns encountered during failure prediction. Then, there is the question of the scale at which 

to characterize failure. It is an ongoing debate whether constituent level failure prediction is 
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better than lamina or laminate level failure prediction. Finally, failure of composites is very 

subjective and end product oriented. What might constitute failure for an aerospace grade 

composite material might be totally different to failure of composite material used in an 

automobile. Considering the difficulty of the topic, it is not surprising that no theory is 

universally recognized as being a unified, verified and a complete failure methodology. 

 

 4.2 Failure modeling  

4.2.1 Constituent level failure modeling 

Composite structures are built from composite laminates, which are fabricated by 

stacking several composite laminae together. The behavior of each lamina is governed by its 

constituents, i.e. the properties of fibers, the surrounding matrix, the volume fraction of fibers, 

and fiber morphology. Most composite failure theories operate at the lamina scale by predicting 

lamina level failure using lamina level homogenized stresses and strains. Damage and failure at 

the lamina level is then used to predict laminate level failure. A major disadvantage of using 

lamina level quantities is that it does not allow the use of constituent level physics to explain the 

failure behavior of composites. Lamina level stress/strains are poor at describing the actual 

stress/strain state in the constituents. In reality, composite failure is a result of failure of one of 

its constituents, either the matrix or fiber. Thus it is important to characterize failure at the 

constituent level as opposed to the lamina level. This kind of failure methodology is called 

micromechanical failure modeling, which uses volume average quantities of the constituents to 

predict failure. For any type of composite loading, constituent level, volume average stresses are 

better at describing the stress/strain state in the constituents. They enable development of 
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physics-based models which can further expand our understanding of behavior of composites. It 

is due to these advantages that the failure techniques studied and developed in this work employ 

constituent level stresses in contrast to lamina level stresses. These constituent level stresses 

were extracted from a representative volume element (RVE) of an idealized microstructure of a 

hexagonally packed fiber reinforced composite, shown in Fig. 25. The RVE has periodic 

boundary conditions enforced on all its sides and was subjected to 6 types of load

 11 22 33 12 13 23, , , , ,      , which generated stresses in the fiber and the matrix regions. After  

 

extracting stresses from the fiber and the matrix regions, volume average constituent stresses 

were computed. This was accomplished by computing the mapping between the composite and 

constituent stresses, which can be used to compute constituent level stresses for any type of 

composite load state.  

 

 

Figure 25: The RVE with hexagonal fiber 

packing 
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This mapping can be computed as shown below 
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where the subscript L denotes the load case,  i  ( i  = 11,22,…,23)  denotes the six components of 

the stress vector, f  denotes the fiber, m  denotes the matrix and c  denotes the composite. For 

example the mapping functions for matrix constituent under a pure 
11  composite load state are   
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Thus for any composite load state, the stress i  in a constituent a is given by 
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4.2.2. The Fertig Failure theory 

The Fertig failure theory (Fertig III, 2012) is a micromechanical matrix failure theory that 

requires three parameters, which all have physical meaning, and utilizes volume-average 

constituent level stresses to predict failure of a constituent (matrix or fiber here) and thereby of 

the composite. One particularly attractive feature of this theory lies in its simple calibration to 

obtain three parameters, which can then be used to predict failure load under any composite state 

of stress. According to this theory, matrix failure occurs when 
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where  21,, sst BBB  represent the coefficients of matrix average stress invariants; hsst IIII ,,, 21  

represent the invariants of matrix stress tensor, 0  represents the shear strength of the matrix, and

  represents pressure strengthening due to compressive loading (~ 0.35) (Hoppel et al., 1995a). 

The values of iB  are determined from three composite static failure tests: transverse tension, 

transverse compression, and longitudinal shear, all of which involve failure of the matrix 

constituent. The invariants are computed from the volume average matrix stresses as follows 
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where  It  corresponds to the maximum tensile stress normal to the fiber, Is1  is related to the shear 

in the longitudinal direction, Is2 is related to the transverse shear, and Ih represents the pressure 

on the maximum transverse shear plane.  
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In order to predict the failure envelopes for lamina failure test cases of the World Wide Failure 

Exercises, the iB terms were calibrated for each case by using available lamina strengths which 

correspond to failure loads.   The RVE was first subjected to a transverse failure load and the 

resultant matrix stresses were used to compute matrix stress invariants using Eqs. (4.5)- (4.8) 

which were then substituted in Eq. (4.4) to obtain three values of the three unknown co-efficients

21,, sst BBB . Similarly, the RVE was subjected to transverse compressive failure load and 

longitudinal shear failure load to obtain three more values for each load case.  The three 

equations with three unknowns were then expressed as  
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where 
ijV  are the values obtained by subjecting the RVE to failure loads. The three coefficients 

for each test case were computed by inverting the 
ijV matrix as shown below   
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The fiber failure criterion uses maximum stress failure criterion given by 

 1
11

11 
f

f

S


 or  1

11

11 
f

f

S


      (4.11) 

where f
S11  is the longitudinal tensile strength of the fiber and f

S11 is the longitudinal compressive 

strength of the fiber. It must be noted that the longitudinal strength of the fiber is used here to 
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express the in situ failure of fibers due various failure mechanism like fiber fracture, fiber pullout, 

fiber buckling etc. 

 

4.2.3. Matrix failure theory based on von Mises-maximum principal stress  

The second matrix failure theory used in this chapter is based on von Mises-maximum principal 

stress. The failure theory predicts matrix failure when the von Mises stress or the maximum 

principal stress in the matrix exceeds a critical value. This approach first requires the calculation 

of matrix stress concentration factor in an ideal microstructure at the point of matrix failure  

 

under transverse tension. Figure 26 shows the fluctuations in the maximum principal stress in the 

matrix constituent when an RVE was subjected to transverse failure load. The matrix stress 

 

 

Figure 26: Fluctuations in maximum principal stress 

in the matrix 
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concentration factor ( m ) can be computed using the maximum principal stress in the matrix 

constituent and the nominal (or volume average) stress in the matrix as follows 

m

nom

m

m



 max        (4.12) 

where m  is the matrix stress concentration factor and m

max and m

nom  are the maximum principal 

stress and nominal matrix stress respectively that must be extracted from the RVE. Since m uses 

peak stress in the matrix it is strongly dependent on the mesh size of the RVE. A coarse mesh in 

the RVE may not capture the peak stress in the matrix constituent accurately and lead to 

incorrect computation of m  and this error in computation of m may lead to incorrect prediction 

failure loads.  A mesh convergence study needs to be done to make sure that the mesh size of the 

RVE is refined enough to capture the correct maximum principal stress in the matrix constituent.  

The matrix failure criterion is taken to be 

1
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
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   or  1

m

VM

m
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S


    (4.13) 

where    
m

principalmax  is the maximum principal matrix stress, 
m

VM  is the von Mises stress in the 

matrix, 
m

tS    is the transverse tensile strength of the matrix, 
m

VMS   is the von Mises strength of the 

matrix, and m is the matrix stress concentration factor. The fiber failure criterion remains 

unchanged. In order to predict the failure envelopes for lamina failure test cases of the World 

Wide Failure Exercises, three quantities were required to be pre-computed for each of the test 

cases. m

tS  was computed by using Eq. (4.3) and the transverse strength of the lamina. m was 
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computed by using Eq. (4.12) . The maximum and the nominal stresses used in Eq. (4.12) were 

extracted by subjecting the RVEs to transverse failure loads. Finally, the laminae were subjected 

to longitudinal shear failure loads (or transverse compressive failure loads) and the matrix 

stresses were computed using Eq. (4.3). These stresses were then used to compute principal 

stresses in the matrix constituent and the von Mises strength of the matrix constituent m

VMS was 

then obtained as follows 

     
2

222

IIIIIIIIIIIm

VMS
 

      (4.14) 

where 
III  , and 

III are the principal stresses of the matrix constituent. 

 

4.3. Results 

The focus of this chapter is to use the Fertig failure theory to predict failure of composites and 

benchmark it against lamina failure test data from well-known composite failure benchmarks 

‘World Wide Failure Exercise-I’ (WWFE-I) and ‘World Wide Failure Exercise-II’ (WWFE-II). 

The failure exercises contain in total twenty-six carefully selected test cases which include 

strength envelopes and stress-strain curves for a range of unidirectional and multidirectional 

laminates. The Fertig failure theory is benchmarked against seven strength envelopes for 

unidirectional laminae. These are ideal for evaluating failure criteria, whereas laminate level tests 

are appropriate for evaluating the combination of failure criteria with progressive damage 

methodology. The details of the test cases are included in Table 2. 
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Table 2: Lamina failure tests from WWFE-I and WWFE-II 

Test 

case 

Lamina 

layup 

Material Loading 

1 0° E-glass/LY556 epoxy 
2  vs. 

12  

2 0° T300/BSL914C carbon/epoxy 
1  vs. 

12  

3 0° E-glass/MY750 epoxy 
2  vs. 

1  

4 0° T300/PR319  
12  vs. 

2 )( 321    

5 90° E-glass/MY750 epoxy 
2  vs. 3  )( 31    

6 0° S-glass/epoxy 
1  vs. 3 )( 32    

7 0° Carbon/epoxy 
1  vs. 3 )( 32    
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4.3.1. Failure predictions of the Fertig failure theory 

The benchmarking of the Fertig failure theory and its comparison with lamina test data and 

leading failure theories from the WWFEs is shown below.  

 

Test case 1: GRP lamina under combined transverse and shear loading  

The failure envelopes predicted by the Fertig failure theory for test case 1 are shown in Fig. 27. 

Figure 27(a) shows the failure envelope when the UD values provided by the WWFE-I authors 

were used as model inputs. Figure 27(b) shows the failure envelope obtained when different UD 

values were used as inputs to the model which yielded slightly better results. In both the cases (a) 

and (b), the theory fits the shape of the test data very well especially in the (
122 , ) quadrant.In 

case (a), the Fertig failure theory is conservative, especially in the (
122 , ) quadrant. By 

choosing a different transverse compressive strength than the one given by the originators of the 

exercise, the theory predicts a failure envelope which is a little less conservative.  The test data 

shows an increase in shear strength with an increase in the transverse compressive load. This 

feature of the experimental data is not captured by the theory. It is known that material 

inhomogeneity in a composite gives rise to stress and strain fluctuations in the constituents. We 

have already shown that the volume average matrix stresses do not capture these stress/strain 

fluctuations in the constituents of the composite material and thus all the strain energy of a 

constituent is not accounted for. The bulk of this missing energy (about 30%) is due to 

fluctuations in the matrix constituent when the composite is a under shear state of stress. Because 

our failure theory uses volume average constituent level stresses to predict failure of the 
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constituents of the composite material, the matrix failure in this high shear region is not captured 

well since the missing strain energy in the matrix constituent is ignored. The matrix failure 

theory needs to be augmented with this missing energy to improve the predictions for this test 

case.       

 

 

 

 

 

 

Figure 27: (a) Biaxial failure envelopes for 0° lamina made of GRP (E-glass/LY556) material with UD 

values provided as model inputs 

    (b) Biaxial failure envelopes for 0° lamina made of GRP (E-glass/LY556) material with 

different UD values used as model inputs 
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Test case 2: CFRP lamina under combined longitudinal and shear loading 

The failure envelope predicted by the Fertig failure theory for test case 2 is shown in Fig.28. It 

can be seen that the theory captures the general shape of the experiments very well except in the 

high-shear region.  As in case of test case 1, a matrix failure theory augmented with the missing 

energy may improve the predictions for this test case.  

 

 

 

 

Figure 28: Biaxial failure envelopes for 0° lamina made of CFRP material 

(T300/BSL914C). 

 

 



68 
 

Test case 3: GRP lamina under combined transverse and longitudinal loading 

The failure prediction of the Fertig failure theory is shown in Fig. 29. It can be seen that like 

most of leading theories, the Fertig failure theory is very non conservative in the ),( 21    

quadrant. The discrepancy between the observed and predicted modes of failure is due to the 

inability of theory to incorporate matrix stresses )( 11

m   in the fiber direction.  

 

 

Figure 29: Biaxial failure envelopes for 0° lamina made of GRP material 

(E-glass/MY750). 
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The failure envelopes predicted by the von Mises-maximum principal stress failure theory for 

test case 3 are shown in Fig. 30. It can be seen that the theory captures the shape of the data well, 

especially in the (
21,   ) quadrant upto a point after which it is very conservative. 

 

 

In the absence of the stress concentration factor, the matrix fails much before actual failure as 

suggested by the experimental data. This failure is captured by the theory when the appropriate 

stress concentration factor was used. The test data suggests that catastrophic failure of the lamina 

 

Figure 30: Biaxial failure envelopes for 0° lamina made of GRP material (E-

glass/MY750) predicted by Von Mises – Max. principal stress theory 
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occurred just before the load reached the tensile strength of the fiber. This was because even 

though the matrix had failed, the fiber could hold the composite together but now it was carrying 

a larger load.  Von Mises – maximum principal stress based failure theory was used with a 

progressive damage scheme to capture this behavior in the fourth quadrant. After matrix 

cracking, the load carrying capacity of the matrix reduces significantly. To calculate the resultant 

fiber stresses after matrix failure, the matrix properties were degraded as follows 

m

original

m

new EE %15         (4.15)

 m

original

m

new  %01.0        (4.16)                                                              

where 
m

newE and m

originalE  are the new and original Elastic moduli of the matrix respectively and  

m

new  and m

original  are the new and original poisons ratio of the matrix respectively. The new 

resultant fiber stresses were computed from the RVE with hexagonal fiber packing using the 

procedure discussed in section 4.2. The original fiber failure criterion and new fiber stresses were 

then used to compute failure load which represents catastrophic composite failure. The failure 

envelope predicted is shown in Fig. 31 along with the failure loads predicted previously without 

using any progressive damage scheme. It can be seen that after a particular load, the matrix fails 

much before what is seen in the experiments and all the load is now transferred to the fibers, the 

failure of which results in catastrophic composite failure.  
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Figure 31: Biaxial failure envelopes for 0° lamina made of GRP material (E-

glass/MY750) predicted by Von Mises – Max. principal stress theory with 

progressive matrix damage 
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Test case 4: CFRP lamina under combined hydrostatic and shear loading  

The failure envelopes predicted by the Fertig failure theory for test case 4 are shown in Fig. 32. 

Figure 32(a) shows the failure envelope when the UD values provided by the authors were used 

as model inputs and  =0.1 and Fig. 32(b) shows the failure envelope when different UD values 

were used as inputs to the model and  =0.35. In both the cases (a) and (b), the theory fits the shape 

of the test data very well. When the shear strength of the 0° tubes is used as one of the model 

inputs, the theory captures the test data of the 0° very well. When the UD values provided by the 

 

Figure 32:  (a) Triaxial failure envelopes for 0° lamina made of CFRP material (T300/PR319) with 

β=0.01 

      (b) Triaxial failure envelopes for 0° lamina made of CFRP material (T300/PR319) with 

β=0.35 
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originators of the exercise are used, the pressure strengthening term   has to be reduced to 0.1 

from 0.35 to capture the failure of 90° tubes. 

 

Test case 5: GRP lamina with combined transverse and through thickness loading  

The failure envelope predicted by the Fertig failure theory for test case 5 is shown in Fig. 33. It 

can be seen that the predictions of the theory captures failure very well.  

 

 

 

 

Figure 33: Triaxial failure envelopes for 0° lamina made of GRP 

material (E-glass/MY750) 
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Test case 6: GRP lamina with combined through thickness and longitudinal loading 

The failure envelope predicted by the Fertig failure theory for test case 6 is shown in Fig. 34. There 

is a large scatter of data in the ( 321 /,   ) quadrant in which the theory does a good job 

predicting failure. In the ( 321 /,   ) failure seems to be occurring due to fiber kinking which 

was concluded by Pinho (Pinho et al., 2013) - “For matrix failure under considerable superposed 

hydrostatic pressure, the stress state in the specimen after matrix failure can in principle lead to 

subsequent fibre kinking”. Since the fiber failure criterion does not account for fiber kinking, the 

 

Figure 34: Triaxial failure envelopes for 0° lamina made of GRP 

material (S-glass/Epoxy) 
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theory gives more conservative results. It can be seen that two theories – Pinho (Pinho et al., 2012) 

and Carrerre (Carrere et al., 2012) capture fiber kinking very well.   

 

Test case 7: CFRP lamina with combined through thickness and longitudinal loading 

A comparison of failure theories for test case 7 is shown in Fig. 35. The Fertig failure theory 

captures the overall shape of the data. Similar to case 6, in the ( 321 /,   ) compressive 

failure was not captured by the theory. Since the fiber failure criterion does not account for fiber 

 

Figure 35: Triaxial failure envelopes for 0° lamina made of CFRP 

material (Carbon/Epoxy) 
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kinking, the predictions of the theory are again conservative. It can be seen again, that the Pinho 

failure theory captures fiber kinking very well. 

 

4.4. Conclusions 

An existing three parameter micromechanics based matrix failure theory was presented and its 

failure load predictions were compared with experimental data from the WWFE exercises. It was 

concluded for most of the test cases, the predictions of the Fertig failure theory were in close 

agreement with the test data. The Fertig failure theory over-predicted failure loads for GRP 

lamina under combined normal and longitudinal compressive loading (test case 3) where the 

failure was caused by matrix cracking perpendicular to the fibers. The Fertig failure theory could 

not predict these cracks in the matrix due to the inability of the theory to incorporate the 

contribution of the longitudinal stress in the matrix constituent  m

11  that had caused the 

cracking. The theory was conservative in predicting the fiber failures under compressive loads in 

test case 6 and 7 since a simple maximum stress failure criterion was used to predict the strength 

of fibers under compression. The Fertig failure theory needs to incorporate the effect of fiber 

buckling to improve failure prediction of the fiber constituent under compressive loads. In 

general, the predictions of the theory were also similar to the leading failure theories from the 

WWFE exercises. However, the leading theories from WWFE-I and WWFE-II require 

substantially more input parameters, which makes calibration very difficult. The advantage of the 

Fertig failure theory lies in its simplistic calibration, which requires just three parameters that can 

be obtained from three standard composite failure tests (transverse tension, transverse 

compression and longitudinal shear). The theory uses volume average matrix stresses to predict 
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failure loads. It has been shown that these volume average constituent quantities do not capture 

all the energy. If the failure theory is augmented with this missing energy, the failure predicting 

capabilities might be improved especially for shear loads.  

The second failure methodology presented in this work is based on von Mises – 

maximum principal stress which uses constituent stresses to predict failure loads. A failure 

envelope was obtained using this theory for test case 3. The matrix appeared to fail much before 

catastrophic failure of the lamina that was observed in the test data. After matrix cracking normal 

to the fiber direction, the fibers were the only load carrying agents left and the lamina was then 

held together only by the fibers. This behavior of the lamina was predicted by using von Mises – 

maximum principal stress theory along with a progressive damage scheme for test case 3 where 

the properties of the matrix were degraded substantially and the failure envelope obtained was 

better than the predictions of any of the leading failure theories.  
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5. Matrix failure modeling accounting for interaction energy 

 In Chapter 2 it was shown that volume average constituent level stresses that are used to 

predict strengths using a micromechanics-based failure theory do not account for all the energy 

of the composite. This missing energy, termed interaction energy, is due to the inability of the 

volume average constituent level stresses to capture the stress/strain fluctuations produced in the 

constituents due to material inhomogeneity. Since these fluctuations are greatest in the matrix 

constituent and negligible in the fiber constituent, the bulk of the interaction energy contribution 

is due to fluctuations within the softer matrix constituent of the composite. Thus only the matrix 

failure theory was augmented with the interaction energy to improve composite failure load 

predictions. This chapter presents a methodology to augment the volume average matrix level 

stresses with appropriate fluctuations of stress in the matrix constituent. These matrix level 

stresses are energy consistent and are used with the Fertig failure theory to predict failure 

envelopes for lamina failure test cases of the first and second World Wide Failure Exercise. The 

results are compared with failure envelopes generated previously with the Fertig failure theory 

but with volume average matrix level stresses.  

 

5.1 Augmenting the volume average matrix level quantities  

 The modelling technique presented in this chapter aims at developing a constituent-level 

stress measure that conserves energy by using respective stress/strain fluctuations in the matrix 

constituent as shown below 

  2signm m m m

ij ij ij ij             (5.1) 
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  2+signm m m m

ij ij ij ij                       (5.2) 

where m

ij  and m

ij  are volume average matrix level stresses and strains respectively, 

2~m

ij  and 
2m

ij are stress and strain fluctuations in the matrix respectively, 
m

ij and 
m

ij are 

energy consistent matrix level stresses and strains respectively and   is fluctuation energy 

constant that minimizes the average error in the total energy. The fiber level stresses are not 

augmented since the stress/strain fluctuations in the fiber constituent are negligible. A RVE of 

hexagonal fiber packing must be subjected to unit biaxial/tri-axial loading according to the load 

configuration being analyzed. The volume average fiber and matrix level quantities and volume 

average stress/strain fluctuation squared quantities of the matrix constituent are extracted from 

this Representative Volume Element (RVE). Average stress and strain fluctuations cannot be 

directly computed by conventional averaging technique as that would yield zero. To obtain 

consistent quantities for augmentation, volume average squared quantities are extracted and their 

square roots are added to the respective volume average matrix quantities. Direct use of the 

energy consistent stresses gives rise to excess strain energy and so the fluctuation energy 

constant  needs to be incorporated such that the new quantities do not over predict the strain 

energy. A detailed procedure for approximating the fluctuations is presented in the following text 

for Test case-1 of the first World Wide Failure Exercise. The fluctuations of the matrix 

constituent for all the other test cases were obtained similarly.  
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5.1.1 Approximating the volume average stress fluctuations of the matrix constituent for a GRP 

lamina under combined normal and shear loading (Test case-1 of WWFE-I) 

 An RVE with hexagonal fiber packing was subjected to combined normal and shear 

loading. For extracting fluctuations and calibration, a unit biaxial load was applied such that it 

corresponded to the x- and y-components of the biaxial load represented as the radius of a circle 

as shown in Fig. 36 and   is varied from 0° to 360°. The two uniaxial loads required to generate 

the normal and shear loading can be expressed as 

 cosI
            (5.3) 

       sinII
                         (5.4) 

          

where   is the resultant bi-axial load and, 
I and

II  

are the corresponding uniaxial loads. Volume average 

quantities (stresses and strains) of the fiber and matrix 

constituents and volume average fluctuation squared 

quantities (stresses and strains) of the matrix constituent 

were extracted from this RVE. Figure 37 shows plots of 

the stress fluctuations, the volume average stresses and 

the energy consistent stresses of the matrix constituent.  

 

 

Figure 36: Decomposition of 

biaxial load into its components 
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Figure 37: Comparison of volume average stresses and volume average stress 

fluctuations and the energy conserving stresses of the matrix constituent for GRP 

lamina under combined transverse normal and shear loading 
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The stress fluctuations observed in the matrix constituent can be categorized into two types: 

TYPE-I and TYPE-II.  TYPE-I fluctuations can be determined from volume average stresses of 

the matrix constituent directly using the expression  

m

ijij

m

ij F  
2~          (5.5) 

(no summation over repeated indices) where 
2~m

ij is volume average stress fluctuation of the 

matrix constituent, 
ijF  is a constant and m

ij  is the volume average stress of the matrix 

constituent. The constant ijF was determined using the volume average stress fluctuations and the 

volume average stresses of the matrix constituent that were extracted from the RVE under unit 

biaxial load. In Fig. 37,  volume average stress fluctuations in plots (a), (b) and (c) are TYPE-I 

fluctuations.  TYPE-II fluctuations cannot be directly determined from the corresponding volume 

average matrix stresses and because the volume average stress is zero. These fluctuations are 

computed using either of the expressions 

 
ijij

m

ij BAL   cos~ 2
                   (5.6) 

 
ijij

m

ij BAL   sin~ 2
         (5.7) 

where 
2~m

ij  is the volume average stress fluctuation of the matrix constituent,  L is 

magnitude of the biaxial/tri-axial load,   is the angle at which load is applied and ijij BA , are 

constants. Again, ijA and ijB were calibrated using the volume average stress fluctuations of the 

matrix constituent of the RVE under unit biaxial load. For the load case under consideration, 
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volume average stress fluctuations in plots (d) and (e) are TYPE-II fluctuations. Table 3 shows 

the types of fluctuations that were observed in the various stress components when an RVE was 

subjected to biaxial/tri-axial states of stress that corresponded to the loading configurations of the 

lamina failure tests of the World Wide Failure Exercises. The fluctuation in the longitudinal 

normal stress component of the matrix constituent was not analyzed because it was concluded in 

Chapter 3 that these fluctuations do not give rise to any interaction energy.   

 

 

 

 

*Although the fluctuations in the 
m

13  component of the matrix stress is of TYPE-II, it was approximated as TYPE-I fluctuation 

using fluctuations in the 
m

12  component of the matrix constituent. 

 

 

 

 

Table 3: Type of fluctuations observed due to different loading configurations in the WWFEs 

 

Test 

case 

 

Material 

 

Loading 

Stress 

components 

TYPE-I 

fluctuations 

Stress 

components 

TYPE-II 

fluctuations 

1 E-glass/LY556 epoxy 
2  vs. 

12  mmm

123322 ,,   mm

2313*,  

2 T300/BSL914C 

carbon/epoxy 
1  vs. 

12  m

12  
mmmm

23133322 *,,,   

3 E-glass/MY750 epoxy 
1  vs. 

2  m

22  
mmmm

23131222 ,,,   

4 T300/PR319  
12  vs. 

2

)( 321    

mmm

123322 ,,   mm

2313*,  

5 E-glass/MY750 epoxy 
2  vs. 3  )( 31    - mmmmm

2313123322 ,,,,   

6 S-glass/epoxy 
1  vs. 3 )( 32    mm

3322,  mmm

231312 ,,   

7 Carbon/epoxy 
1  vs. 3 )( 32    mm

3322,  mmm

231312 ,,   
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A comparison of the constants ijF and ijij BA , for various lamina failure test cases of the World 

Wide Failure Exercises is shown in Table 4, Table 5 and Table 6 respectively. 

 

Table 4: Comparison of values of Fij for various test cases of the WWFEs 

 

 

Constants 

 

Test case 

1 2 3 4 5 6 7 

22F  0.445 - 0.435 0.143 - 0.154 0.075 

33F  3.245 - - 0.140 - 0.154 0.075 

12F  0.513 0.452 - 0.528 - - - 

13F  0.513 0.452 - 0.528 - - - 

 

 

Table 5: Comparison of values of Aij  for various test cases of the WWFEs 

 

 

 

 

 

 

Constants 

 

Test case 

1 2 3 4 5 6 7 

22A  - 0.008 - - 0.373 -  

33A  - 0.006 0.309 - 0.532 -  

12A  - - 0.004 - 0.002 0.004 0.004 

13A  - - 0.003 - 0.0004 0.004 0.004 

23A  0.144 0.004 0.145 0.111 0.103 0.128 0.068 
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The value from Tables 4, 5 and 6 suggest that all the constants ijF , ijA  and ijB are strongly 

dependent on the type of loading and the material properties of the composite material.  

 

5.1.2 Computing the fluctuation energy constant    

 Strain energy of the composite was computed using volume average quantities of the 

fiber constituent and energy consistent quantities of the matrix constituent. In all the load cases it 

was seen that direct augmentation of the matrix level quantities resulted in an over prediction of 

the strain energy of the composite. The fluctuation energy constant    was introduced not only 

to prevent this over prediction of energy of the composite but also to minimize the average error 

in the interaction energy. The interaction energy was computed using the volume average 

composite quantities, volume average fiber level quantities and energy consistent quantities of 

the matrix constituent which can be shown as 

Table 6: Comparison of values of Bij  for various test cases of the WWFEs 

 

Constants 

 

Test case 

1 2 3 4 5 6 7 

22B  - 0.001 - - 0.026 -  

33B  - 0.006 0.004 - 0.006 -  

12B  - - 0.0005 - 0.003 0.0003 0.002 

13B  - - 0.0003 - 0.003 0.0003 0.0002 

23B  0.006 0.001 0.004 0.006 0.052 0.003 0.001 
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An iterative process was used to compute   such that the mean error in the interaction energy 

was zero.   The different values of   that were computed for the various lamina failure test 

cases are provided in Table 7.  

 

Table 7: Values of Ψ for different test cases of the WWFEs 

 

 

Test case 

 

Material 

 

Loading 

 

  

1 E-glass/LY556 epoxy 
2  vs. 

12  0.4750 

2 T300/BSL914C carbon/epoxy 
1  vs. 

12  0.4110 

3 E-glass/MY750 epoxy 
1  vs. 

2  0.5360 

4 T300/PR319  
12  vs. 

2 )( 321    0.3520 

5 E-glass/MY750 epoxy 
2  vs. 3  )( 31    0.3620 

6 S-glass/epoxy 
1  vs. 3 )( 32    0.4230 

7 Carbon/epoxy 
1  vs. 3 )( 32    0.1070 

 

 

It can be seen from table 7 that is a function of loading type, material properties of the 

composite, and the type of fiber packing in the RVE. Table 8 shows the values of  that were 

obtained for composites with different material properties and same fiber volume fraction 

subjected to combined normal and longitudinal shear loading.  
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Table 8: Values of Ψ for different materials subjected to same loading configuration 

 

Material Ψ 

E-glass/LY556 epoxy 0.4750 

T300/BSL914C carbon/epoxy 0.5050 

E-glass/MY750 epoxy 0.4730 

T300/PR319  0.4750 

E-glass/MY750 epoxy 0.4730 

S-glass/epoxy 0.4780 

Carbon/epoxy 0.4250 

 

 

A comparison of interaction energy computed using volume average matrix stresses and energy 

consistent matrix level stresses from Eqs. (5.1) and (5.2) is shown in Figures 38-44.  

 

 

 

Figure 38: Interaction energy for test case-1 
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Figure 39: Interaction energy for test case-2 

 

 

Figure 40: Interaction energy for test case-3 
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Figure 41: Interaction energy for test case-4 

 

 

Figure 42: Interaction energy for test case-5 
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Figure 43: Interaction energy for test case-6 

 

 

Figure 44: Interaction energy for test case-7 
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5.2 Modified Fertig failure theory 

After calibration, Eqs. (5.5), (5.6) and (5.7) can be used to compute stress fluctuations of the 

matrix constituent for any type and magnitude of loading, material properties and type of 

distribution of fibers in the matrix. Using these stress fluctuations, augmented stresses of the 

matrix constituent can be determined using Eqs. (5.1) and (5.2). The modified Fertig failure 

theory uses energy consistent constituent stresses of the matrix constituent to predict matrix level 

failure. For the sake of clarity and continuity the modified approach is outlined below. Failure in 

the matrix constituent occurs when 

 
 

  1

1

1
2211

0

2




 ssss

h

tt IBIB

I

IB




       (5.9)        

where  21,, sst BBB  represent the coefficients of the stress invariants of the matrix constituent; 

hsst IIII ,,, 21  represent the invariants of matrix stress tensor, 0  represents the shear strength of 

the matrix, and   represents pressure strengthening due to compressive loading, the value of 

which is chosen to be 0.35 (Hoppel et al., 1995b).  The values of iB  are determined from three 

composite static failure tests: transverse tension, transverse compression, and in-plane shear, all 

of which involve failure of the matrix constituent. The invariants are computed from the 

augmented volume average matrix stresses as follows 
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mm

hI 3322            (5.13)  

   

where m

ij are energy consistent stresses of the matrix constituent,  It  corresponds to the 

maximum tensile stress normal to the fiber, Is1  is related to the in-plane shear, Is2 is related to the 

transverse shear, and Ih represents the pressure on the maximum transverse shear plane. The fiber 

failure criterion is outlined below 

 1
11

11 
f

f

S


 or  1

11

11 
f

f

S


      (5.12)  

where 
f

11 is the volume average longitudinal stress of the fiber constituent, 
f

S11  is the 

longitudinal tensile strength of the fiber and 
f

S11 is the longitudinal compressive strength of the 

fiber. The different values of 21,, sst BBB that were obtained by using volume average stresses of 

the matrix constituent and energy consistent matrix level stresses are listed in Table 9.  
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Table 9: Comparison of Bi  parameters obtained by using volume average and energy consistent 

matrix level stresses 

 

Test cases 
tB  

 Nmm2
  

1sB  

 22 Nmm  

2sB  

 22 Nmm  

m

ij  
m

ij  m

ij  
m

ij  m

ij  
m

ij  

1 0.001274 0.000832 0.000487 0.000303 0.000994 0.001114 

2 0.001835 0.001408 0.000351 0.000244 0.000396 0.000458 

3 0.000925 0.000606 0.000459 0.000287 0.000837 0.000912 

4 0.000882 0.000643 0.000266 0.000164 0.000928 0.000591 

5 0.000969 0.000622 0.000459 0.000287 0.000608 0.000796 

6 0.000324 0.000213 0.000473 0.000292 0.000612 0.000583 

7 0.000878 0.000399 0.000472 0. 000091 0.000682 0.000120 

 

Table 10 contains the ratios of the parameters obtained by using volume average matrix level 

stresses and energy consistent matrix level stresses.  

 

Table 10: Comparison of ratios of the parameters obtained by using volume average matrix level 

stresses and energy consistent matrix level stresses. 

 

Test cases 
tB  

 Nmm2
 

1sB  

 22 Nmm  

1sB  

 22 Nmm  

1 1.5313 1.6073 0.8923 

2 1.3033 1.4385 0.8646 

3 1.5264 1.5993 0.9178 

4 1.3717 1.6220 1.5702 

5 1.5579 1.5993 0.7638 

6 1.5211 1.6199 1.0497 

7 2.2005 5.1868 5.6833 
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5.3 Results  

 The failure load predictions obtained for lamina failure test cases of the World Wide 

Failure Exercises by using the Fertig failure theory with energy consistent stresses of the matrix 

constituent are presented in this section. The new failure plots are compared with available test 

data and the original predictions obtained with volume average matrix stresses.   

 

Test case 1: GRP lamina under combined normal and shear loading 

The failure predictions obtained by using energy consistent and volume average matrix stresses 

in the Fertig failure theory for a GRP lamina under combined normal and shear loadi 

 

Figure 45: Comparison of failure load predictions for GRP 

lamina under combined normal and shear loading 
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ng are shown in Fig. 45.  The failure envelopes were the same in the (
1222, ) quadrant. 

However, in the (
1222, ) quadrant, the failure envelope obtained by using energy consistent 

matrix stresses was slightly better in capturing the high shear failure loads that the volume 

average stresses failed to capture.  Figure 46 shows the distribution of stresses in the RVE under 

unit normal and shear load for two loading angles: 45 ° (first quadrant) and 135 ° (second 

quadrant).  Results show that the spread of the stress distribution in the transverse direction is 

greater for the RVEs loaded at an angle of 45° in the first quadrant as compared to the one 

loaded at an angle of 135 ° in the second quadrant. However, the shear stress distribution is 

larger for the RVE loaded at an angle of 135° in the first quadrant as compared to the one 

loadedat 45° in the second quadrant. Since maximum interaction energy occurs due to 

fluctuations in the shear stress, augmented stresses are more accurate in the second quadrant in 

this test case.    
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Figure 46: Comparison of stress distributions 
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Test case 2: CFRP lamina under combined longitudinal and shear loading 

The failure predictions obtained by using volume average and energy consistent matrix stresses 

in the Fertig failure theory for a CFRP lamina under combined longitudinal and shear loading are 

shown in Fig. 47.  The results suggest that the energy consistent matrix level stresses produced a 

no improvement in predicting failure loads for this load case.  There is a large scatter of data 

especially in case of high shear failure loads which not captured by any failure theory of the first 

World Wide Failure Exercise.  

 

 

 

    Figure 47: Comparison of failure load predictions for 

CFRP lamina under combined longitudinal and shear 

loading 
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Test case 3: GRP lamina under combined normal and longitudinal loading 

The failure predictions obtained by using volume average and energy consistent matrix stresses 

in the Fertig failure theory for a GRP lamina under combined normal and longitudinal loading 

are shown in Fig. 48.  Like test case 2, the energy consistent matrix level stresses failed to 

produce any significant improvement in the failure load predictions. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

    Figure 48: Comparison of failure load predictions for GRP lamina 

under combined longitudinal and shear loading 
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Test case 4: CFRP lamina under combined hydrostatic and shear loading 

The failure predictions obtained by using volume average and energy consistent matrix level 

stresses in the Fertig failure theory for a CFRP lamina under combined hydrostatic and shear 

loading are shown in Fig. 49. Overall the use of energy consistent matrix level stresses only 

slightly changed the failure envelope.  

 

 

 

 

Figure 49: Comparison of failure load predictions for CFRP lamina under 

combined hydrostatic and shear loading 
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Test case 5: GRP lamina with combined normal and through thickness loading 

The failure predictions obtained by using volume average and energy consistent matrix stresses 

in the Fertig failure theory for a GRP lamina under combined normal and through thickness 

loading are shown in Fig. 50. The use of energy consistent stresses produced a more conservative 

failure envelope as compared to that produced by volume average stresses of the matrix 

constituent. 

 

 

 

Figure 50: Comparison of failure load predictions for GRP lamina 

under combined transverse and through thickness loading 
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Test case 6: GRP lamina with combined through thickness and longitudinal loading 

The failure predictions obtained by using volume average and energy consistent matrix stresses 

in the Fertig failure theory for a GRP lamina under combined through thickness and longitudinal 

loading are shown in Fig. 51. The Fertig failure theory with energy consistent stresses for the 

matrix constituent predicted slightly higher matrix strengths under transverse and through 

thickness tension as compared to that predicted by using volume average stresses. 

 

 

 

Figure 51: Comparison of failure load predictions for GRP 

lamina under combined through thickness and longitudinal 

loading 
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Test case 7: CFRP lamina with combined through thickness and longitudinal loading 

The failure predictions obtained by using volume average and energy consistent matrix level 

stresses in the Fertig failure theory for a CFRP lamina under combined through thickness and 

longitudinal loading are shown in Fig. 52. Like test 6, the Fertig failure theory with energy 

consistent stresses for the matrix constituent did not lead to any improvement in the failure load 

predictions for this test case. 

 

 

 

 

Figure 52: Comparison of failure load predictions for CFRP 

lamina for combined through thickness and longitudinal 

loading 
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5.4 Discussion 

 Volume average matrix constituent quantities do not capture the stress/strain fluctuations 

that arise in the constituents of a composite under different types of loading thereby giving rise to 

interaction energy. These fluctuations are greatest in the matrix constituent and are negligible in 

the fiber constituent of the composite material.  Consequently, bulk of the Interaction energy 

contribution is due to the matrix constituent. Thus only the volume average stresses and strains 

of the matrix constituent need to be augmented with the fluctuations in stresses and strains 

respectively to improve failure load predictions. In this chapter a method of capturing the 

fluctuations in the matrix constituent was presented and the volume average quantities of the 

matrix quantities were augmented with these fluctuations. The new energy consistent stresses of 

the matrix constituent were then used with the Fertig failure theory to obtain failure load 

predictions for various lamina failure tests of the first and second World Wide Failure Exercise. 

The results were then compared with experimental test data and with the failure envelopes that 

were previously obtained using volume average matrix stresses in the Fertig failure theory.  

 The results show that for most of the test cases the energy consistent matrix stresses did 

not improve failure load predictions. In test case 5, the energy consistent matrix stresses led to 

prediction of a more conservative failure envelope as compared to that which was predicted 

using volume average matrix stresses. Even though the improvement in the strength predictions 

was by a very small amount in a couple of test cases (test cases 2 and 6), the matrix stresses used 

in failure load predictions were energy consistent and hence more accurate than their volume 

average counterparts. Lastly, now that the new stress metric is energy consistent, we know that 

any discrepancy in the failure load predictions and the experimental test data is not due to 

inaccurate stresses but because of the deficiencies in the failure theory itself. Thus one problem 
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has been solved and now we may direct our efforts towards other modifications to the failure 

theory to improve strength predictions in unidirectional fiber reinforced composite materials.  
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6. Conclusions and Recommendations 

6.1. Summary and Conclusions 

 This study has detailed the motivation for creation of robust and reliable tools to predict 

failure in unidirectional fiber reinforced polymers based on micromechanical modeling using 

energy consistent volume average constituent level stresses.  It was shown that volume average 

quantities (stresses/strains) of the constituents do not account for all the energy of the composite 

due to their inability to capture the stress/strain fluctuations of the constituents. This study 

showed that the missing energy, termed interaction energy, is dependent on the fiber volume 

fraction, material properties of the composite and the type of loading on the composite. The 

interaction energy was nearly 30% for composites with carbon fibers and epoxy matrix due to 

longitudinal shear loads and negligible for longitudinal tensile loads. Under transverse loads the 

interaction energy was about 12% and under transverse shear loads it was 15%.  

A three parameter micromechanics based Fertig failure theory was used to asses failure 

loads for lamina failure tests of the first and the second World Wide Failure Exercises. This 

theory used volume average constituent level stresses to predict failure of the composite and 

thereby predict failure of the lamina.  For almost all the test cases, the predictions of the theory 

were in close agreement with the test data. The theory assumes that the longitudinal stresses in 

the matrix constituent do not contribute in any failure mechanism which led to over-prediction of 

strengths under combined tensile longitudinal and compressive transverse loads for glass/epoxy 

composites. A maximum stress failure criterion was used to assess fiber failure due to which 

fiber failure due to fiber kinking mechanism was not predicted in two of the test cases. Some test 

cases were identified where failure loads could be improved by augmenting the matrix failure 
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theory with interaction energy.  A von Mises – maximum principal stress failure criteria was also 

used to obtain failure envelope for one of the test cases where the Fertig failure theory over 

predicted the failure loads. A progressive damage scheme was used in which the properties of the 

matrix constituent in the failed lamina was degraded significantly thereby reducing the load 

carrying capacity of the matrix. The resultant loads carried by fibers were calculated using 

micromechanics.  Results with this progressive modeling scheme were compared with one of the 

test cases where both the Fertig failure theory and the von Mises-Maximum principal stress 

failure theory. The failure envelope predicted by the von Mises-maximum principal stress theory 

described the mechanism of failure accurately and it was better than any of the leading failure 

theories. It was concluded that this theory with a similar progressive damage scheme would yield 

good results in the remaining test cases.  

A new methodology was formulated to capture the stress-strain fluctuations of the matrix 

constituent and the volume average quantities of the matrix constituent were augmented with 

respective fluctuations. The energy consistent stresses were used along with the Fertig failure 

theory to predict failure envelopes for the lamina failure test cases of the first and second World 

Wide Failure Exercise. The results were then compared with experimental test data and the 

failure enveloped predicted by the same theory using un-augmented volume average stresses. 

The comparisons showed that the failure enveloped improved failure load predictions slightly for 

some of the test cases. Even though the improvement of the failure load predictions was not by a 

significant amount, the problem of interaction energy has been solved. It is well known that 

volume average constituent quantities do not capture the stress/fluctuations in the constituents of 

the composite material.  Some of these fluctuations, which may play a role in failure 

mechanisms, self-equilibrate and produce no corresponding volume average stress/strain in the 
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constituent. The methodology that was developed in this thesis to compute energy consistent 

quantities (stresses and strains) provides a means to capture these stress/strain fluctuations and 

thereby improve the assessment of failure in composite.  

  

6.2. Recommendations for future work 

 The failure theories that were ranked highest by the authors of the World Wide Failure 

Exercises can be categorized into two types. First – theories which were very simple in 

implementation and use and yet provided reasonably good results and second – theories which 

were complicated and involved a large number of parameters but gave very accurate predictions.  

The Fertig failure theory is micromechanics based theory which requires just three parameters 

that can be calibrated from three simple failure tests on unidirectional laminae. Moreover it 

incorporates physics to assess failure of the constituents of the composite. It is not as 

complicated as some of the leading failure theories and can be calibrated very easily.  

Comparisons showed that the predictions of the theory were in good agreement not only with the 

experimental data but also with the predictions of the leading failure theories of the world wide 

failure exercises. One of the test cases revealed that the theory needs to consider the effects of 

longitudinal stress of the matrix component to assess failure of the matrix constituent. Currently, 

failure of  the fiber constituent is assessed using a maximum stress failure criterion which is why 

the theory could not predict fiber failure due to fiber kinking in a couple of test cases. The theory 

assumes linear elastic behavior of the constituents of the composite material and it would be 

interesting to look at the results when non-linear matrix behavior is incorporated. Only lamina 

failure test cases were analyzed since a progressive damage scheme for predicting cascading 
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laminate failure was not adopted.  The use of energy consistent stresses coupled with non-linear 

behavior of the matrix and a progressive scheme will make the Fertig failure theory a powerful 

approach in the field of failure load predictions of FRPs.  

 Only unidirectional fiber reinforced composites were analyzed in this work but the 

modeling technique presented in the thesis can be extended to any kind of composite material.  

Lamina failure for only a select number of loading configurations was considered in this study 

exercise and the energy consistent stresses may yield improvements in some of the untested 

configurations.  
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Appendix A: Periodic boundary conditions 

The naming convention as shown in Fig. X was adopted to derive the periodic boundary 

conditions for the Representative Volume Element (RVE) which is a cuboid where CN1, 

CN2,…, CN8- are node sets that contain the nodes on the eight corners (vertices) of the cuboid, 

ES1, ES2, ES3, ES4, LS1, LS2, LS3 and LS4 are node sets that contain the nodes on the edges 

of the cuboid. These node sets do not contain the nodes on the corners of the cuboid. FS1, 

FS2,…, FS6 are node sets that contain the nodes on the six faces of the cuboid. These node sets 

do not contain the nodes on the edges and the corners of the cuboid.  
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The equation constraints for nodes on the corners are  

0726  CN

i

CN

i

CN

i uuu  

0743  CN

i

CN

i

CN

i uuu  

0765  CN

i

CN

i

CN

i uuu  

0462  CN

i

CN

i

CN

i uuu  

where 3,2,1i  denotes the directions and u denotes the displacements of corner nodes in the i-direction. 

The equation constraints for nodes on the edges are  

 

 

Figure 53: Naming convention for node sets of the Representative 

Volume Element 
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where 3,2,1i  denotes the directions and u denotes the displacements of corner and edge nodes in the i-

direction. The equation constraints for nodes on the faces are  
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where 3,2,1i  denotes the directions and u denotes the displacements of corner and face nodes in the i-

direction. 
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Appendix B: Influence coefficients for the fiber and matrix constituents of composites of 

the World Wide Failure Exercises 

1. Fibers 

1.1  E-glass  





























1.2167      0.0005      0.0000      0.0000      0.0000      0.0000  

 0.0005      1.2266      0.0000      0.0001-    0.0000      0.0000  

 0.0000      0.0000      1.2274      0.0002      0.0005      0.0001  

 0.0000      0.0002-    0.0004      1.1540      0.0629-    0.0024-

 0.0000      0.0000      0.0020      0.0634-    1.1548      0.0024-

 0.0000      0.0001-    0.0005      0.1730-    0.1726-    1.5718  

glassEX  

 



117 
 

 

1.2  T-300 

 





























1.1654      0.0002       0.0001-    0.0000       0.0000      0.0000  

 0.0004      1.2217       0.0000-    0.0002-     0.0000      0.0000  

 0.0000      0.0000       1.2225      0.0002       0.0003      0.0000  

 0.0000      0.0004-     0.0001      1.1019       0.0635-    0.0010-

 0.0000      0.0001-     0.0009      0.0639-     1.1024      0.0010-

 0.0000      0.0001-     0.0002      0.2154-     0.2151  -    1.6478 

300TX  

 

 

1.3  S-glass 

  





























1.2257       0.0003      0.0001-    0.0000       0.0000      0.0000  

 0.0005       1.2404      0.0000-    0.0002-     0.0000      0.0000  

 0.0000       0.0000      1.2412      0.0001       0.0005      0.0000  

 0.0000       0.0007-    0.0005      1.1622       0.0633-    0.0023-

 0.0001       0.0003-    0.0018      0.0637-     1.1630      0.0023-

 0.0000       0.0002-     0.0004      0.1891-     0.1887-    1.6261  

glassSX  

 

1.4 AS4 

    





























 1.1786       0.0002       0.0001-     0.0000       0.0000-     0.0000  

 0.0004       1.2278       0.0000-     0.0002-     0.0000-     0.0000-

 0.0000-     0.0000       1.2285       0.0002       0.0003       0.0000  

 0.0000-     0.0004-     0.0001       1.1146       0.0639 -     0.0008-

 0.0000       0.0001-     0.0010       0.0643-     1.1151       0.0008-

 0.0000       0.0001-     0.0002       0.2122-     0.2118-     1.6518  

4ASX  

 

 

2.      Matrix 
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2.1    LY556 

         





























 0.6470        0.0000      0.0000      0.0000      0.0000     0.0000  

 0.0001-      0.6308      0.0000      0.0000      0.0000     0.0000  

 0.0000        0.0000      0.6295      0.0002-    0.0002     0.0000  

 0.0000       0.0001-     0.0008      0.7491      0.1026     0.0039  

 0.0000       0.0001-     0.0007      0.1032      0.7479     0.0039  

 0.0000       0.0002-     0.0016      0.2819      0.2812     0.0686  

556LYX  

 

 

2.2  BSL914C 





























0.7523        0.0001-     0.0000      0.0000      0.0000     0.0000

 0.0001-      0.6679       0.0000      0.0000      0.0000     0.0000

 0.0001-      0.0000       0.6668      0.0002-    0.0002     0.0000

 0.0000        0.0001-     0.0004      0.8474      0.0951     0.0015

 0.0000       0.0002-      0.0001      0.0957      0.8467     0.0015

 0.0000       0.0005-      0.0010      0.3227      0.3222     0.0297

914CBSLX  

 

 

2.3   MY750 





























 0.6633       0.0000       0.0000     0.0000       0.0000      0.0000  

 0.0001-      0.6408       0.0000     0.0001-     0.0000      0.0000  

 0.0001-     0.0000       0.6396     0.0002-     0.0002      0.0000  

 0.0000       0.0003-     0.0007      0.7604      0.0968      0.0042  

 0.0000       0.0003-     0.0006      0.0974      0.7592      0.0042  

 0.0000       0.0006-     0.0013      0.2818      0.2811       0.0761  

750MYX  

 

2.4   PR319 
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



























  0.6695       0.0000       0.0000      0.0000       0.0000      0.0000 

 0.0001-     0.6329       0.0000      0.0001-     0.0000      0.0000 

 0.0001-     0.0000       0.6316      0.0002-     0.0002      0.0000 

 0.0000       0.0003-     0.0006      0.7697       0.1000      0.0004 

 0.0000       0.0003-     0.0005      0.1006       0.7687      0.0004 

 0.0000       0.0006-     0.0013      0.3029       0.3023      0.0071 

319PRX  

 

 

2.5   Epoxy 





























  0.7326       0.0001-     0.0000      0.0000        0.0000     0.0000 

 0.0001-     0.6589       0.0000      0.0000        0.0000     0.0000 

 0.0001-     0.0000       0.6577      0.0002-      0.0002     0.0000 

 0.0000       0.0001-     0.0004      0.8283        0.0958     0.0012 

 0.0000       0.0002-     0.0002      0.0963        0.8275     0.0012 

 0.0000       0.0005-     0.0011      0.3177        0.3173     0.0238 

EpoxyX  

 

 

 

 

 

 


