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Complex interactions in fiber-reinforced composites between multiple failure mechanisms have made accurate
failure prediction a daunting challenge. One approach to better identify failure mechanisms has been the use of
volume average constituent stresses in the composite to predict the onset and outcome of failure in individual
constituents. However, this approach was shown here to not conserve strain energy in the composite, which could
potentially affect the accuracy of failure prediction under certain loading conditions. The focus of this work was to
develop an expression for the discrepancy in strain energy, termed the interaction energy, and to numerically evaluate
the influence of constituent properties, fiber volume fraction, and load combinations on the magnitude of this energy.
The simulation results showed that interaction energy accounts for nearly 30% of the total strain energy in the
composite for certain loading conditions in typical aerospace-grade carbon-epoxy composites, suggesting that existing
constituent-based failure theories might be enhanced by incorporation of this energy into failure criteria.

Nomenclature
U = total composite strain energy
U; = (fiber strain energy
U, = matrix strain energy
V. = composite volume
Vy = total fiber volume
V.. = total matrix volume
€ = local strain
g = local fluctuation in strain
(¢) = mean strain
e = composite strain
g/ = strain induced in the fiber
&" = strain in the matrix constituent
6¢ = composite stress
o/ = stress induced in the fiber
o™ = stress in the matrix constituent
@, = fiber interaction energy density
®,, = matrix interaction energy density

I. Introduction

HE use of composite materials in the wind and aerospace

industries has grown dramatically in recent years, with
composites comprising 50% or more of The Boeing Company’s 787
and Airbus SAS’s A350. With this increase in use has come a greater
demand for design tools that can accurately predict damage initiation
and propagation, durability, and remaining life. This has proven
to be quite challenging due the range of complex failure behav-
iors exhibited by composites. Unlike conventional homogeneous
materials like metals, the constituent undergoing failure may switch
rapidly, and the failure mechanisms within each constituent can vary
widely depending on the loading. At the lamina level, tensile loads
parallel to the fiber direction may cause both fiber and matrix fracture.
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Under transverse loading, mode I matrix cracking or fiber/matrix
debonding may occur in tension, with a shear matrix failure occurring
in compression. At the laminate level, delamination may occur,
which will substantially affect the distribution of stresses in each
lamina. This complexity has resulted in a large number of proposed
composite failure theories with no clearly superior choice.

The First and Second World-Wide Failure Exercises (WWFEI and
WWEE 11, respectively) have provided a much needed benchmark
against which to compare the effectiveness of various composite
failure theories for both glass- and carbon-fiber composites over
complex loading configurations [1-3]. One distinction among failure
theories was the use of micromechanics in the prediction of failure,
such that various measures of fiber and matrix constituent stresses
were used to predict lamina failure rather than using lamina-level
failure criteria to predict failure. These included microstress theory
[4,5], micromechanics of failure [6,7], multicontinuum theory [8—
10], and a bridging model that combines micromechanics with
anisotropic plasticity [11-13]. In addition to the theories used in
WWEE I or II, other well-known constituent-based composite failure
theories are commonly used, such as the generalized method of cells
[14-20] and strain invariant failure theory [21,22]. Although none of
the previous theories were judged in the benchmark exercises to
exceed the performance of more established theories, they were
assessed as evolving toward maturity [3]. But the unique appeal of
constituent-level failure theories is not simply in static failure
prediction, but their potential for physics-based modeling and
materials design efforts, such as the Materials Genome Initiative [23]
and Integrated Computational Materials Engineering [24].

The methods used to extract constituent stresses and strains from
composite stresses typically use some form of a localization tensor to
map composite stresses to constituent stresses, which may be
evaluated at specific points or as volume average quantities. The use
of constituent stresses at specific points is strongly dependent on the
choice of representative volume element (RVE) for the composite
microstructure. Any deviation from the idealized structure may
substantially alter the stress at a particular location. The use of
volume average stresses is appealing because it is less sensitive to
details of the microstructure; random fiber packing and idealized
hexagonal fiber packing will yield nearly the same average
constituent stresses and strains. However, the use of volume average
constituent stresses and strains may not account for the total strain
energy in a composite. For example, a careful inspection of the stress
fields in a composite microstructure reveals the presence of shear
stresses in the constituents, even when the composite loading is
purely transverse normal; these stresses, however, average to zero
and therefore cannot be accounted for in any failure or material
nonlinearity model. As a result, failure prediction under particular
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loading configurations may not be consistent with bulk constituent
properties because a significant portion of the strain energy may be
unaccounted for. The energy not accounted for when using volume
average constituent stresses and strains is termed the interaction
energy.

To enhance physics-based composite failure prediction, all strain
energy should be accounted for. The goal of this paper is to provide a
quantitative foundation for the development of constituent-level
composite failure theories based on the conservation of strain energy
across length scales. As such, the focus of this research is to quantify
the magnitude of the interaction energy relative to the total strain
energy for a variety of fiber volume fractions, matrix elastic
properties, and complex multi-axial loading configurations. The
reported results clearly indicate that a significant fraction of energy is
unaccounted for under a variety of loading conditions in typical
aerospace composite materials but also suggest that this interaction
energy could be readily incorporated into constituent failure criteria.

II. Theoretical Motivation

This section focuses on establishing the equations that can be used
to quantify the interaction energy. Consider an RVE of a composite
material consisting of fiber and matrix phases. Let U denote the strain
energy of this composite under an arbitrary load state. Assuming a
linear elastic material, this energy can be represented as

1
— C.C
U_Efvcaijeijdvc $))

where a -and e are the composite stresses and strains, respectively;
repeated ij 1nd1ces are summed, and integration is performed over
the entire volume of the composite V.. For a periodic RVE subject
to homogeneous boundary conditions as defined by Hashin [25],
Eq. (1) can be readily written in terms of average composite
properties [26-28]:

1
U=5{ephei)Ve @)

where the terms in the brackets denote volume average quantities.
Strain energy may be separated into contributions from the fiber and
the matrix:

U=0U;+U, 3)
such that
Ly
Ur=3 f oij Vs @)
Vi
1
m 5 m m (5)
Vi

where the superscripts f and m denote quantities for fiber and matrix,
respectively. In contrast to using average lamina stresses, summing
the strain energies of the constituents computed using constituent
volume average stresses does not account for all of the strain energy
in the composite. The energy that is unaccounted for is termed the
interaction energy. To quantify this energy, the strains in each
constituent are written in terms of a mean value (g;;) plus a fluctuation
€;;; similarly, the stresses are also written as a mean value (o;;) plus
a fluctuation 6;;:

g = &; + (&;) (6)

0;; = 6;; + (6) @)

For the fiber, Egs. (6) and (7) are substituted into Eq. (4) to obtain

/( L)+ GENWE) + @) av, ®)

Expanding Eq. (8) yields

1 f 1
Up= E/(“{,)(él,) vy + 5/"{;5:1 dvy
Vf j
1 - L[
+§/<a[j)gg_‘,dvf +5fo{}(g{,.)dvf ©)
vy Vi

which, on further simplification, gives

l
U (lj jvf+

because volume average quantities are constant, and 5{] and E‘lfi are
local fluctuations with averages that are identically zero. The matrix
contribution is derived in a similar manner to give

&av; (10)

1 1
U, = E(G:’;Me;’;)vm +§/ ij€ij dvm (11)
Vin

The strain energies in the fiber and matrix can then be written as

1

Up =S {0l MV + @pVy (12)
1 m m

U, ZE(GU)(E,-J-)V,"—I—‘Dme (13)

where @, and @, are the fiber and matrix contributions to the
interaction energy density, respectively given by

1 -

_ Sf &

@ = Z—Vf/fffj%‘
Vs

v, (14)

1
o, = v, /6 tendv, (15)
Vi

The interaction energy AU is thus related to the total strain energy and
the energy computed from volume average constituent quantities via

1 1
U= Uy, + Uy =5 (o) eV + 5 (o el)V, + AU (16)
where

Substituting Hooke’s law into Eq. (14) allows the interaction energy
density to be written entirely in terms of strain fluctuations:

1 of z
o = 2, /C,jklefje,{lde:—/Cmn nEndv,  (18)
Vy
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where CJ,, is the m, n component of the 6 X 6 fiber stiffness matrix.
Assuming transverse isotropy and expanding Eq. (18) yields

20, = Cf ((#,)7) + CL{(EL)") + Chal(E)?) + 2, (], - &)
+ 2C{2(5‘{1 : §§3) + 2C§3 (g‘gz : §§3) + C£4((J7{2)2)
+ CL{(F13)) + Cle (7)) (19)

The interaction energy density for the matrix can be similarly shown
to be

20,, = CTi{(EN)?) + C5((E5)7) + C{(E55)7) + 20 (&Y, - &5)
+ ZCTz(ETl ' 53"3) + 2C313 <5§”2 . g3mz) + Cﬁ((ﬂ"z)z)
+ CLl(1)?) + Cgl(733)?) (20

Equations (19) and (20) quantify the interaction energy between fiber
and matrix, but they contain a total of 18 terms. The focus of the
subsequent modeling effort is to determine the significance of the
interaction energy relative to the total strain energy, to investigate
how the interaction energy may change as a function of loading and
material properties, and to attempt to establish relative contribution of
each constituent to the interaction energy.

III. Finite-Element Modeling

A finite-element model was developed and studied using Abaqus
[29] to investigate the magnitude of the interaction energy as a
function of fiber volume fraction, elastic moduli of the constituents,
and varying loading conditions. For the purpose of analysis, a
representative volume element (RVE) of a hexagonal fiber packing
was modeled, as shown in Fig. 1, where fiber cross sections are darkly
shaded, and the remainder is matrix material. Periodic boundary
conditions were applied on all RVE edges, faces, and corners. This
was achieved by extracting nodes from the RVE after meshing,
reordering them properly, and using equation constraints for the node
sets. The axial direction of the fibers is defined as the 1-direction
(longitudinal). Carbon fiber properties (AS4) reported by Sun and
Vaidya [26] and shown in Table 1 were used for all simulations. The
matrix was assumed to be isotropic with a Poisson’s ratio of 0.34.

Three parametric studies were conducted. First, the fiber volume
fraction was varied from 0.05 to 0.85, with the matrix modulus fixed
at 1% of the fiber-direction fiber modulus E,, = 2.35 GPa. In the
second study, the matrix modulus was varied from 1 to 120% of
the fiber modulus in the fiber direction. (A matrix modulus of

— Fiber

Matrix

Fig. 1 RVE with hexagonal fiber packing for fiber volume fraction
of 0.6.

Table 1 Baseline material properties of the fiber

Material Type E, E, G  vip vn
AS4 Transversely isotropic 235 GPa 14 GPa 28 GPa 0.2 0.25

0.0204 X E{gpe; roughly corresponds to epoxy 3501-6; E,, =
4.8 GPa.) Results for the modulus study were obtained for four
different fiber volume fractions of 0.05, 0.25, 0.6, and 0.85. In both of
these parametric studies, four unique composite loading states were
examined: €11, €, €12, and &»3. These loads were achieved by fixing
displacements of the RVE control nodes such that a strain of 0.01 was
applied in each load case, with all other strains held fixed at zero. In
the third study, five types of biaxial loads were applied: 0,5, — 033,
01y — 0, O1p — 023, O — 013, and 03 — 0)). These loads were
applied such that they corresponded to the x and y components of the
biaxial load represented as the radius of a circle as shown in Fig. 2,
with @ varying from O to 180 deg. The two uniaxial loads required to
generate the biaxial load state can be expressed as

oy =0cosl o =o0sind 21

where ¢ = 10 MPa was the resultant biaxial load vector magnitude,
ando; andoy; are the corresponding uniaxial loads. For this third
study, the matrix modulus and fiber volume fraction were held
constant at 0.01702 X E{qper (E,, = 4.0 GPa) and 0.6, respectively.

IV. Results and Discussion

As discussed previously, three series of simulations were carried
out to quantify the dependencies of the interaction energy on material
properties, fiber volume fraction, and loading conditions: 1) constant
matrix and fiber modulus with varying fiber volume fraction,
2) varying matrix modulus for four different fiber volume fractions,
and 3) constant material and microstructure properties with varying
biaxial loading conditions.

A. Effect of Fiber Volume Fraction on Interaction Energy

Volume average quantities (stresses, strains, and stiffness) of the
composite were extracted from the model, and then the total strain
energy for the composite was calculated using Eq. (2). The volume
average quantities (stresses, strains, and stiffness) of the constituents
were also extracted. Constituent strain fluctuations and average
stresses and strains were computed and used in Eqgs. (19, 20) to give
®; and ®,,. The total interaction energy was computed using

y
A
o/ |
Oy '
=z 0 : > X
cSI
Y

Fig.2 Decomposition of biaxial load into its components.
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Fig.3 Variation of interaction energy with fiber volume fraction.

Eq. (17). The interaction energy fraction (AU /U) was computed for
all the fiber volume fractions and each load case. The properties of the
RVE were transversely isotropic; thus, only four (and not all six) load
cases are unique.
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(Avg: 75%)
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Figure 3 shows AU /U as a function of fiber volume fraction for
each load case. Three features of these data are of particular interest.
First, the interaction energy is strongly dependent on the load case,
and it can be a significant fraction of the total energy. It can be more
than 30% of the total strain energy for longitudinal shear loading
(shear-12), although it was negligible for unidirectional loading
in the fiber direction (tension-11). Second, interaction energy
increases with increasing volume fraction, up to typical volume
fractions. Finally, transverse tension (tension-22) and transverse
shear (shear-23) show a peak at a fiber volume fraction of about 0.65,
very close to typical fiber volume fractions in aerospace-grade
composites.

To qualitatively understand these features, consider stresses in an
RVE with a fiber volume fraction of 0.6 subject to the four load cases.
In case of longitudinal tension, shown in Fig. 4a, the stress
distribution is uniform in each constituent throughout the structure;
thus, strain fluctuations are minimal. Consequently, as shown in
Egs. (19) and (20), ®; and ®,,, and correspondingly AU, are nearly
zero for this load case. In the case of longitudinal shear, shown in
Fig. 4b, the stress fluctuation is largest. Consequently, the interaction
energy is maximized for this case, as seen in Fig. 3. This result is
critically important because it means that, at a typical fiber volume
fraction for aerospace-grade composites (60%), volume average
constituent stresses neglect nearly 30% of the distortion energy in the
composite in shear. The transverse tension and transverse shear load
cases are shown in Figs. 4c and 4d, respectively. For both cases, the
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Fig. 4 Stress plots for a) load case tension-11, b) load case shear-12, ¢) load case tension-22, and d) load case shear-23.
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Fig. 5 Probability distribution function for strains for different load
cases.

stress fluctuations are significant, and so interaction energy will not
be negligible.

Stress distributions for longitudinal shear, transverse shear, and
transverse tension are quantitatively shown in Fig. 5. The high
probability densities at low strain values result from fiber strains;
thus, the fluctuations in fiber strain are small. The matrix strain
distribution consists of the larger strain values. The distinction is
shown in Fig. 5 by enclosing fiber and matrix distribution in dashed
lines. The matrix strain distribution is widest in longitudinal shear
and smallest in transverse tension. Consequently, the interaction
energy should be the least for transverse tension and the greatest for
longitudinal shear, in agreement with Fig. 3.

An important observation to be made from these data is that the
matrix strain distribution, and consequently the matrix strain
fluctuation, is much broader and at much higher strains than the fiber
strain distribution. This suggests that the small strain values of in fiber
in conjunction with the even smaller strain fluctuations in fiber render
the fiber a minor contributor to the interaction energy in the
composite. To confirm this, the relative contribution of each constit-
uent was examined. Figure 6 shows the relative matrix contribution to
interaction energy plotted against fiber volume fraction for the four
different load cases. The results are notable; up to typical fiber
volume fractions, the matrix accounts for vast majority of interaction

1.5 v v v v v r r
Variation of matrix contribution to AU
w.r.t fiber volume fraction
1.25}
g: 1t Ql"l""':ii“<<
¢ “ea,
E [ ]
* 075t .
"
g
B
= 05
© ® Tension-11
* g‘ﬁnsim'ﬁZZ
L <« Shear—
0.25 m Shear-23
0

0 01 02 03 04 05 06 07 08 09
Fiber volume fraction

Fig. 6 Variation of contribution of matrix to interaction energy with
fiber volume fraction.

energy. For a fiber volume fraction of 0.6, the matrix contributes
almost the entirety (more than 99%) of the interaction energy of the
composite for longitudinal shear loading, the most significant load
case. Even for transverse tension and transverse shear, matrix
contribution to interaction is about 90%. This result is important
because it permits the interaction energy contribution of the fiber to
be neglected, such that augmenting matrix failure theories with
interaction energies can be the focus of future failure prediction
efforts.

B. Effect of Relative Matrix Modulus on Interaction Energy

To investigate the variation of the interaction energy with matrix
modulus, the matrix modulus was varied from 1 to 120% of the fiber-
direction fiber modulus. Results were obtained for four fiber volume
fractions: 0.05, 0.25, 0.60, and 0.85. Figure 7 shows the variation of
relative interaction energy with matrix modulus for the four unique
load cases. Figure 7a shows the variation of interaction energy with
matrix modulus in longitudinal tension. For this load case, the
interaction energy for all volume fractions is negligible. For the other
three load cases, shown in Figs. 7b—7d, a general trend is observed; an
initial increase in matrix modulus results in a decrease in interaction
energy until a minimum is reached, after which additional increase in
matrix modulus results in an increase in interaction energy. The
minimum of the interaction energy occurs when the relevant fiber and
matrix stiffnesses are the closest. For the load case in the transverse
direction, shown in Fig. 7b, the interaction energy reaches a
minimum when the matrix modulus is 5% of the fiber-direction fiber
modulus, corresponding to a matrix modulus of 11.75 GPa, which is
close to the fiber modulus in the transverse direction of 14 GPa. For a
load case of longitudinal shear, shown in Fig. 7c, the interaction
energy reaches a minimum when the matrix modulus is 30% of the
fiber-direction fiber modulus, corresponding to a matrix shear
modulus of 26.31 GPa, which is close to the fiber shear modulus in
12-direction of 28 GPa. For a load case of transverse shear, shown in
Fig. 7d, the interaction energy reaches a minimum when the matrix
modulus is 5% of the fiber-direction fiber modulus, corresponding to
a matrix shear modulus of 4.38 GPa, which is close to the fiber shear
modulus in 23-direction of 5.6 GPa. These results indicate that, for
near isostress loadings, the interaction energy increases with
increasing difference in the fiber and matrix modulus in the loading
directions.

C. Effect of Combined Loading on Interaction Energy

In actual application, a composite is rarely subjected to uniaxial
stresses, and so it is important to study the behavior of interaction
energy under multi-axial load states. As discussed in Secs. IV.A
and IV.B, the interaction energy for tensile loading in the longitudinal
is negligible. Thus, it was not included in the study of combined
loads. The fiber volume fraction and the matrix modulus were held
constant at 0.6 and 4.0 GPa, respectively. The biaxial load is
represented by the radius of a circle, as shown in Fig. 2, where 6 is the
angle made by the radius of the circle with the x axis, which is varied
from O to 180 deg.

Figure 8 shows the variation of interaction energy under five types
of biaxial 10adings: 0p) — 033, O1p — 0723, O1p — 023, O1p — O3, and
073 — 0. Under a biaxial longitudinal shear loading oy, — 013,
the interaction energy does not change, remaining constant at 27% of
the total strain energy. This gives us an important metric for
evaluating interaction energy under combined longitudinal shear
loading. For a particular fiber-matrix combination and fiber volume
fraction, interaction energy for biaxial longitudinal shear loading is
always the same as that for pure longitudinal shear loading. Varying
the ratio of o}, to o5 essentially rotates the stress distributions in the
RVE but does not substantially change their relative quantitative
values. When the RVE was subjected to a transverse normal 6,5 — 633
biaxial loading, the interaction energy reached a minimum at 45 deg,
corresponding to equal biaxial transverse loading. At this angle, a
nearly uniform distribution of strains and stresses in the constituents
is observed, similar to Fig. 4a, producing negligible interaction
energy. In the remaining three cases (61, — 0,3, 013 — 02, and
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Fig.7 Variations of interaction energy with matrix modulus in a) load case tension-11, b) load case tension-22, ¢) load case shear-12, and d) load case

shear-23.

0,3 — 07), the maximum interaction energy occurs at 90 deg, which
corresponds to a pure shear loading. This result is remarkable; any
deviation from a pure shear loading reduces the interaction energy
that would be computed. Thus, the composite shear loading in
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Fig. 8 Variation of* interaction energy with biaxial loads.

particular causes interaction energies to become significant, such that
the interaction energy could be bounded by evaluating only a small
number of load states.

V. Conclusions

Accurate failure prediction is critical in efforts to maximize the
promising advantages offered by composite materials. This requires
physics-based failure prediction models, which necessarily require
accurate understanding of constituent stress and strain. The use of
volume average constituent stresses and strains to predict failure is a
computationally efficient first step toward this effort but does not
account for the entire strain energy in the composite. In this study, this
missing energy, termed the interaction energy, was introduced, and
expressions to define it were derived. A series of parametric finite-
element studies were conducted to quantify the relative magnitude of
the interaction energy for varying fiber volume fractions, matrix
modulus, and loading conditions. Our results showed that, for typical
carbon-epoxy composites used in the aerospace industry, the inter-
action energy may be as high as 30% of the total strain energy in the
composite under shear loading, which is the load state yielding the
highest relative interaction energy. Furthermore, for such systems,
the matrix constituent is the major contributor to interaction energy.
This result is important for future efforts to enhance composite failure
prediction because it suggests that focus be placed on matrix failure
criteria augmentation.
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