ENERGY CONSERVING VOLUME AVERAGE STRESSES TO PREDICT COMPOSITE FAILURE

Kedar A. Malusare, Masters Thesis Defense 4/13/2014 Department of Mechanical Engineering, University of Wyoming.

What are composites ?

- Heterogeneous mixtures of two or more homogeneous phases
- This work focuses on unidirectional fiber reinforced polymers
- Fibers are embedded in a polymer matrix to obtain a lamina
- <u>Fibers</u> strength
 <u>Matrix</u> provides stability & transmits load among fibers
- Laminae are stacked together to form laminates

Where are they used ?

- Composites are widely used in various industries
- Popular in aerospace, wind energy sector, automobile & recreation etc.
- Have high specific stiffness, high specific strengths etc.
- Tailor their material properties according to needs of end product
- Increase strength, reduce weight and costs

Failure of composites

Rudder²

site_troubles_in_aircraft.htm

Pressure vessel⁴

1.http://www.eastcountymagazine.org/node/2734

Bike frame⁵

4.http://www.immt.pwr.wroc.pl/~gasior/Researches/Laboratory/laboratory.htm 5.http://www.bustedcarbon.com/2010_06_01_archive.html

Overview

8. Future work

Mesomodeling

- Considers lamina layers (plies) as building blocks of laminates
- Use volume average lamina quantities (stresses & strains) to predict failure
- Examples Maximum stress/strain, Tsai-Wu⁶, Hashin⁷, Christensen⁸, Puck⁹ etc.
- Failure prediction remains inadequate

Do <u>lamina</u> quantities capture the true stress/strain state in a constituent ?

Tsui, S.W., and Wu, E.M. (1971). A general theory of strength for anisotropic materials. Journal of Composite Materials 5, 58–80.
 Tlashin, Z., and Roten, A. (1973). A fairpe failure criterion for fiber reinforced materials. Journal of Composite Materials 7, 484–464.
 Chrötstensen, E. (1979). Tsress based syndial/alure criteria for theor composite. International Journal of Solids and Structures 34, 525–543.
 Puck, A., and Schürmann, H. (1998). Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology 58, 1045–1067.

Multiscale micromechanical modeling

- Use average <u>constituent</u> quantities to predict failure
- Can apply constituent level physics
- Can predict the response of the entire composite using just constituent properties
- Examples are Chamis¹⁰, Mayes¹¹, Huang¹² & Tsai-Ha¹³.

Gotsis, P., Chamis, C.C., and Minnetyan, L. (1998). Prediction of composite laminate fracture: micromechanics and progressive fracture. Composites Science and Technology 58, 1137–1149.
 Mayes, J.S., and Harsen, A.C. (2004). Composite laminate failure analysis using multicontinuum theory. Composites Science and Technology 54, 979–934.
 Huang, Z.M. (2004). Abridging model prediction of the ultimate strength of composite to baixal loads. Composite Science and Technology 64, 395–448.
 Huang, Y., Jin, C., and Ha, S.K. (2013). Strength prediction of triaxially loaded composites using a progressive damage model based on micromechanics of failure. Journal of Composite Materials 47, 777–792.

Strain energy comparison

$$U = \frac{1}{2} \sigma_{ij}{}^{c} \varepsilon_{ij}{}^{c} V_{c}$$

$$U_{f} = \frac{1}{2} \sigma_{ij}{}^{f} \varepsilon_{ij}{}^{f} V_{f} \qquad U_{m} = \frac{1}{2} \sigma_{ij}{}^{m} \varepsilon_{ij}{}^{m} V_{m}$$

$$U > U_{f} + U_{m}$$

$$U = (U_{f} + U_{m}) + \Delta U$$

where ΔU is the missing energy.

Interaction energy

$$U_f = \frac{1}{2} \sigma_{ij}^{\ f} \varepsilon_{ij}^{\ f} V_f + \Phi_f V_f$$
$$U_m = \frac{1}{2} \sigma_{ij}^{\ m} \varepsilon_{ij}^{\ m} V_m + \Phi_m V_m$$

$$\Delta U = \Phi_f V_f + \Phi_m V_m$$

where ΔU is the 'Interaction Energy'.

UNIVERSITY OF WYOMING

Interaction energy

$$\Phi_{f} = \frac{1}{2} \int_{V_{f}} \widetilde{\sigma}_{ij}^{f} \widetilde{\varepsilon}_{ij}^{f} dV_{f} \qquad \Phi_{m} = \frac{1}{2} \int_{V_{m}} \widetilde{\sigma}_{ij}^{m} \widetilde{\varepsilon}_{ij}^{m} dV_{m}$$
$$\Phi_{f} = \frac{1}{2} \int_{V_{f}} C_{ijkl} \widetilde{\varepsilon}_{ij}^{f} \widetilde{\varepsilon}_{kl}^{f} dV_{f} \qquad \Phi_{m} = \frac{1}{2} \int_{V_{m}} C_{ijkl} \widetilde{\varepsilon}_{ij}^{m} \widetilde{\varepsilon}_{kl}^{m} dV_{m}$$

Assuming transverse isotropy and expanding in i,j,k and, l yields

Expression for Interaction energy

$$\begin{split} \Phi_{f} &= \frac{1}{2} \begin{bmatrix} C_{11}^{f} \left\langle \left(\widetilde{\varepsilon}_{11}^{f} \right)^{2} \right\rangle + C_{22}^{f} \left\langle \left(\widetilde{\varepsilon}_{22}^{f} \right)^{2} \right\rangle + C_{33}^{f} \left\langle \left(\widetilde{\varepsilon}_{33}^{f} \right)^{2} \right\rangle + 2C_{12}^{f} \left\langle \widetilde{\varepsilon}_{11}^{f} \cdot \widetilde{\varepsilon}_{22}^{f} \right\rangle + 2C_{13}^{f} \left\langle \widetilde{\varepsilon}_{11}^{f} \cdot \widetilde{\varepsilon}_{33}^{f} \right\rangle + \\ 2C_{23}^{f} \left\langle \widetilde{\varepsilon}_{22}^{f} \cdot \widetilde{\varepsilon}_{33}^{f} \right\rangle + C_{12}^{f} \left\langle \left(\widetilde{\gamma}_{12}^{f} \right)^{2} \right\rangle + C_{13}^{f} \left\langle \left(\widetilde{\gamma}_{13}^{f} \right)^{2} \right\rangle + C_{23}^{f} \left\langle \left(\widetilde{\varphi}_{23}^{f} \right)^{2} \right\rangle \\ \Phi_{m} &= \frac{1}{2} \begin{bmatrix} C_{11}^{m} \left\langle \left(\widetilde{\varepsilon}_{11}^{m} \right)^{2} \right\rangle + C_{22}^{m} \left\langle \left(\widetilde{\varepsilon}_{22}^{m} \right)^{2} \right\rangle + C_{33}^{f} \left\langle \left(\widetilde{\varepsilon}_{33}^{m} \right)^{2} \right\rangle + 2C_{12}^{m} \left\langle \widetilde{\varepsilon}_{11}^{m} \cdot \widetilde{\varepsilon}_{22}^{m} \right\rangle + 2C_{13}^{m} \left\langle \widetilde{\varepsilon}_{11}^{m} \cdot \widetilde{\varepsilon}_{33}^{m} \right\rangle + \\ 2C_{23}^{m} \left\langle \widetilde{\varepsilon}_{22}^{m} \cdot \widetilde{\varepsilon}_{33}^{m} \right\rangle + C_{12}^{m} \left\langle \left(\widetilde{\gamma}_{12}^{m} \right)^{2} \right\rangle + C_{13}^{m} \left\langle \left(\widetilde{\gamma}_{13}^{m} \right)^{2} \right\rangle + C_{23}^{m} \left\langle \left(\widetilde{\varphi}_{23}^{m} \right)^{2} \right\rangle \\ \end{bmatrix} \end{split}$$

UNIVERSITY OF WYOMING

Expression for Interaction energy

$$\begin{split} \Phi_{f} &= \frac{1}{2} \begin{bmatrix} S_{11}^{f} \langle \left(\widetilde{\sigma}_{11}^{f} \right)^{2} \rangle + S_{22}^{f} \langle \left(\widetilde{\sigma}_{22}^{f} \right)^{2} \rangle + S_{33}^{f} \langle \left(\widetilde{\sigma}_{33}^{f} \right)^{2} \rangle + 2S_{12}^{f} \langle \widetilde{\sigma}_{11}^{f} \cdot \widetilde{\varepsilon}_{22}^{f} \rangle + 2S_{13}^{f} \langle \widetilde{\sigma}_{11}^{f} \cdot \widetilde{\sigma}_{33}^{f} \rangle + \\ 2S_{23}^{f} \langle \widetilde{\sigma}_{22}^{f} \cdot \widetilde{\sigma}_{33}^{f} \rangle + S_{12}^{f} \langle \left(\widetilde{\tau}_{12}^{f} \right)^{2} \rangle + S_{13}^{f} \langle \left(\widetilde{\tau}_{13}^{f} \right)^{2} \rangle + S_{23}^{f} \langle \left(\widetilde{\tau}_{23}^{f} \right)^{2} \rangle \\ \Phi_{m} &= \frac{1}{2} \begin{bmatrix} S_{11}^{m} \langle \left(\widetilde{\sigma}_{11}^{m} \right)^{2} \rangle + S_{22}^{m} \langle \left(\widetilde{\sigma}_{22}^{m} \right)^{2} \rangle + S_{33}^{m} \langle \left(\widetilde{\sigma}_{33}^{m} \right)^{2} \rangle + 2S_{12}^{m} \langle \widetilde{\sigma}_{11}^{m} \cdot \widetilde{\varepsilon}_{22}^{m} \rangle + 2S_{13}^{m} \langle \widetilde{\sigma}_{11}^{m} \cdot \widetilde{\sigma}_{33}^{m} \rangle + \\ 2S_{23}^{m} \langle \widetilde{\sigma}_{22}^{m} \cdot \widetilde{\sigma}_{33}^{m} \rangle + S_{12}^{m} \langle \left(\widetilde{\tau}_{12}^{m} \right)^{2} \rangle + S_{13}^{m} \langle \left(\widetilde{\tau}_{13}^{m} \right)^{2} \rangle + S_{23}^{m} \langle \left(\widetilde{\tau}_{23}^{m} \right)^{2} \rangle \\ \Delta U &= \Phi_{f} V_{f} + \Phi_{m} V_{m} \end{split}$$

Deterview I Failure modeling techniques - HOW to predict failure ? 2. Missing strain energy - "Interaction energy" using FEA 3. Investigate the nature of "Interaction energy" using FEA 4. Failure modeling using volume average constituent stresses 5. Modeling fluctuations and augmenting volume average quantities 6. Failure modeling using energy conserving constituent stresses 7. Summary/Conclusions 8. Future work

FEA model

3

- Representative Volume Element (RVE) with hexagonal fiber packing.
- Fiber material Carbon

Three parametric studies:

- 1. Fiber VF varied from 0.05 to 0.85
- 2. Matrix modulus varied as function of fiber modulus
- 3. Five types of biaxial loads

K. A. Malusare and R. S. Fertig, American Institute of Aeronautics and Astronautics, 2014.

Effect of fiber volume fraction on interaction energy

- Matrix modulus 1% (2.35 GPa) 0.6
- Strongly dependent on the loading
- Maximum for shear-12 & negligible for tension-11
- For VF 0.6 ΔU is about 30% for shear-12.

UNIVERSITY OF WYOMING

Effect of material properties on interaction energy

Effect of material properties on interaction energy

Effect of biaxial loading on interaction energy

- Five types of biaxial loads were considered
- $\sigma_{22} \sigma_{33}$
- $\sigma_{12} \sigma_{22}$
- $\sigma_{12} \sigma_{23}$
- $\sigma_{12} \sigma_{13}$
- $\sigma_{23} \sigma_{22}$

22

• Biaxial load represented by radius of circle

 θ is varied from 0 ° to 180°

Effect of transverse biaxial loading on interaction energy

Effect of biaxial loading on interaction energy

- Fiber material is carbon $E_m = 1.702\% E_f$ = 4.0 GPa
- For $\sigma_{12} \sigma_{13}$ interaction energy is constant
- For σ₂₂ σ₃₃ interaction energy is minimum at 45° and peaks at 135°
- For remaining three cases interaction energy is maximum at an angle of 90°

Matrix contribution to interaction energy

Challenges

- Interaction energy is in the range of <u>30-40%</u> of total energy for shear loading for carbon-epoxy systems.
- All this interaction energy is due to the matrix
- Can we augment the matrix stresses with the interaction energy to improve failure load predictions ?

<page-header><page-header><page-header>

Fertig matrix failure theory¹⁴

28

Fiber failure theory

Computing constituent stresses

RVE with hexagonal fiber packing
 Loads σ₁₁, σ₂₂, σ₃₃, τ₁₂, τ₁₃, τ₂₃
 Mapping ^LX^a_i = σ^a_i/σ^C_L
 Can obtain <u>constituent</u> stresses for any <u>composite</u> stress state

K. A. Malusare and R. S. Fertig, American Institute of Aeronautics and Astronautics, 2014.

<u>GRP lamina under combined transverse and</u> <u>shear loading</u>

<u>CFRP lamina under combined hyrdostatic</u> <u>and shear loading</u>

<u>GRP lamina under combined longitudinal and</u> <u>transverse loading</u>

<u>The von Mises-maximum principal stress failure</u> <u>theory</u>

<u>GRP lamina under combined longitudinal and</u> <u>transverse loading</u>

Overview

8. Future work

Modeling fluctuations

(Avg: 75%)

- Used an RVE with Hexagonal fiber packing with fiber VF - 0.6
- Subjected to *unit* biaxial/triaxial loading
- Stress/strain fluctuations of matrix constituent were extracted
- Two types of matrix fluctuations were observed

Modeling fluctuations - Type 2

Interaction energy due to energy conserving quantities

Strain energy of composite

$$U = \frac{1}{2}\sigma_{ij}^c \varepsilon_{ij}^c V_f$$

• Strain energy of composite from constituents

$$U_{new} = \frac{1}{2}\sigma_{ij}^{f}\varepsilon_{ij}^{f}V_{f} + \frac{1}{2}\overline{\sigma}_{ij}^{m}\overline{\varepsilon}_{ij}^{m}V_{f}$$

Comparison of strain energies

$$U > U_{new}$$
 $\Delta U = U - U_{new}$

UNIVERSITY OF WYOMING

Augmenting quantities

Need to incorporate the Variation of Interaction energy fluctuation energy constant - Ψ 0.8 • from $< \sigma_{ij}^{m} > \& < \epsilon_{ij}^{m} >$ $\overline{\sigma}_{ij}^{m} = \pm \left\langle \sigma_{ij}^{m} \right\rangle \pm \Psi \sqrt{\left\langle \widetilde{\sigma}_{ij}^{m^{2}} \right\rangle}$ from $\overline{\sigma}_{ij}^{m}$ & $\overline{\epsilon}_{ij}^{m}$ w/o Ψ 0.6 from $\overline{\sigma}_{ii}^{n}$ & ε_{ii}^m with $\Psi = 0.4750$ $\overline{\varepsilon}_{ij}^{m} = \pm \left\langle \varepsilon_{ij}^{m} \right\rangle \pm \Psi \sqrt{\left\langle \widetilde{\varepsilon}_{ij}^{m^{2}} \right\rangle}$ 0.4 0.2 ΔU/U Range of Psi is $0 \le \Psi \le 1$ 0 Psi is obtained by iteration -0.2-0.4 Psi depends on material properties, configuration of loading -0.6 & type of fiber packing 315° 135° 225° 270° 0 45° 90° 180° 360° Angle

Overview 1. Failure modeling techniques - HOW to predict failure ? Missing strain energy - "Interaction energy" PROBLEM 3. Investigate the nature of "Interaction energy" using FEA 4. Failure modeling using volume average constituent stresses SOLUTION 5. Modeling fluctuations and augmenting volume average quantities 6. Failure modeling using energy conserving constituent stresses 8. Future work UNIVERSITY OF WYOMING

GRP lamina under combined transverse and shear loading

43

<u>CFRP lamina under combined hyrdostatic</u> <u>and shear loading</u>

<u>GRP lamina under combined transverse and</u> <u>through thickness loading</u>

<u>GRP lamina under combined longitudinal and</u> <u>transverse loading</u>

Overview

8. Future work

Summary

- Stress/strain fluctuations in the constituents give rise to Interaction energy which can reach 30%
- Interaction energy is mainly due to the fluctuations in the matrix constituent
- Stress/strain fluctuations were extracted from the matrix constituents and the matrix quantities were augmented to minimize interaction energy
- A three parameter micromechanics based Fertig failure theory was used along with energy consistent stresses to predict failure

Conclusions

- The augmented matrix quantities are now energy conserving
- Use of energy conserving matrix stresses improved failure predictions slightly
- Slight improvement in static failure prediction will improve creep and fatigue load predictions significantly.

Overview

8. Future work

Future work

- Failure envelopes for multiply laminates need to be obtained
- Fertig failure theory needs to be augmented with matrix stresses in the longitudinal direction (σ^m₁₁)
- Augmented stresses maybe used with other micromechanical theory to see if there is an improvement in failure load predictions

Thank you QUESTIONS ?

A closer look at the expression for IE

Material inhomogeneity increases and decreases with fiber VF

$$\Phi = \frac{1}{2} \begin{bmatrix} C_{11} \langle \left(\tilde{\varepsilon}_{11}\right)^2 \rangle + C_{22} \langle \left(\tilde{\varepsilon}_{22}\right)^2 \rangle + C_{33} \langle \left(\tilde{\varepsilon}_{33}\right)^2 \rangle + 2C_{12} \langle \tilde{\varepsilon}_{11} \cdot \tilde{\varepsilon}_{22} \rangle + 2C_{13} \langle \tilde{\varepsilon}_{11} \cdot \tilde{\varepsilon}_{33} \rangle + \\ 2C_{23} \langle \tilde{\varepsilon}_{22} \cdot \tilde{\varepsilon}_{33} \rangle + C_{12} \langle \left(\tilde{\gamma}_{12}\right)^2 \rangle + C_{13} \langle \left(\tilde{\gamma}_{13}\right)^2 \rangle + C_{23} \langle \left(\tilde{\gamma}_{23}\right)^2 \rangle \end{bmatrix}$$

•
$$\Phi = f(\tilde{\varepsilon}) = f(\tilde{\sigma})$$
 and $\Delta U = \Phi_f V_f + \Phi_m V_m$

• <u>So</u> $\Delta U = f(\tilde{\varepsilon}) = f(\tilde{\sigma})$

Q1 : Negligible $\tilde{\varepsilon}/\tilde{\sigma}$ in Tension-11

Q2 : Maximum $\tilde{\epsilon}/\tilde{\sigma}$ in Shear-12

Distribution of stress with load case for fiber VF 0.6

Interaction energy in tension-22 and shear-23

Effect of material properties on interaction energy

Effect of fiber volume fraction on interaction energy

Effect of material properties on interaction energy

Material properties

		<u>VF</u> <u>variation</u>	<u>Matrix modulus</u> <u>variation</u>	<u>Biaxial</u> loading
Material	Fiber	Matrix	Matrix	Matrix
Material type	Transversel y isotropic	Isotropic	Isotropic	Isotropic
$E_{11}(GPa)$	235.0	$0.01E_{11}$ (2.35)	$0.01E_{11}$ to $1.2E_{11}$	4.0
E ₂₂ (GPa)	14.0	$0.01E_{11}$ (2.35)	$0.01E_{11}$ to $1.2E_{11}$	4.0
G ₁₂ (GPa)	28.0	0.8769	Varies with matrix modulus	1.493
ν_{12}	0.2	0.34	0.34	0.34
ν_{23}	0.25	0.34	0.34	0.34

Material properties WWFE-1

Fibre type	AS4	T300	E-glass 21xK43 Gevetex	Silenka E-Glass 1200tex
Matrix	3501-6 epoxy	BSL914C epoxy	LY556/HT907/ DY063 epoxy	MY750/HY917/ DY063 epoxy
Specification	Prepeg	Filament winding	Filament winding	Filament winding
Manufacturer	Hercules	DFVLR	DLR	DRA
Fibre volume fraction, V _f	0.60	0.60	0-62	0.60
Longitudinal modulus, E ₁ (GPa)	126 ^a	138	53-48	45.6
Transverse modulus, E_2 (GPa)	11	11	17.7	16-2
In-plane shear modulus, G ₁₂ (GPa)	6.6ª	5-5 ^a	5-83 ^a	5.83 ^a
Major Poisson's ratio, v12	0.28	0.28	0-278	0.278
Through thickness Poisson's ratio, v23	0.4	0.4	0-4	0.4
Longitudinal tensile strength, X _T (MPa)	1950 ^b	1500	1140	1280
Longitudinal compressive strength, X _c (MPa)	1480	900	570	800
Transverse tensile strength, Y _T (MPa)	48	27	35	40
Transverse compressive strength, Y _c (MPa)	200 ^b	200	114	145 ^b
In-plane shear strength, S ₁₂ (MPa)	79 ^b	80 ^b	72 ^b	73 ^b
Longitudinal tensile failure strain, ε_{1T} (%)	1.38	1.087	2.132	2.807
Longitudinal compressive failure strain ε_{1C} (%)	1.175	0.652	1.065	1.754
Transverse tensile failure strain ε_{2T} (%)	0.436	0.245	0-197	0.246
Transverse compressive failure strain, ε_{2C} (%)	2.0	1.818	0.644	1.2
In-plane shear failure strain, $\gamma_{12\mu}$ (%)	2	4	3.8	4
Strain energy release rate, G _{IC} (Jm ⁻²)	220	220	165	165
Longitudinal thermal coefficient, $\alpha_1 (10^{-6})^{\circ}$ C)	-1	-1	8-6	8.6
Transverse thermal coefficient, α_2 (10 ⁻⁶ /°C)	26	26	26-4	26-4
Stress free temperature (°C)	177	120	120	120
Curing			2 h at 120°C	2 h at 90°C
-			2 h at 150°C	1.5 h at 130°C
				2 h at 150°C

^aInitial modulus. ^bNonlinear behaviour and stress/strain curves and data points are provided.

UNIVERSITY OF WYOMING

Material properties WWFE-1

Fibre type	AS4	T300	E-glass 21xK43 Gevetex	Silenka E-Glass 1200tex
Longitudinal modulus, E _{fl} (GPa)	225	230	80	74
Transverse modulus, Er2 (GPa)	15	15	80	74
In-plane shear modulus, G _{f12} (GPa)	15	15	33.33	30.8
Major Poisson's ratio, v_{12}	0.2	0.2	0.2	0.2
Transverse shear modulus, G ₁₂₃	7	7	33.33	30.8
Longitudinal tensile strength, X _{IT} (MPa)	3350	2500	2150	2150
Longitudinal compressive strength, X _{fc} (MPa)	2500	2000	1450	1450
Longitudinal tensile failure strain, ε_{0T} (%)	1.488	1.086	2.687	2.905
Longitudinal compressive failure strain, $\varepsilon_{\Pi C}$ (%)	1.111	0.869	1.813	1.959
Longitudinal thermal coefficient, $\alpha_{ff} (10^{-6})^{\circ} C$	-0.5	-0.7	4.9	4.9
Transverse thermal coefficient, $\alpha_{/2}$ (10 ⁻⁶ /°C)	15	12	4.9	4.9

Matrix type	3501-6 epoxy	BSL914C epoxy	LY556/HT907/ DY063 epoxy	MY750/HY917/ DY063 epoxy
Manufacturer	Hercules	DFVLR	Ciba Geigy	Ciba Geigy
Modulus, Em (Gpa)	4.2	4.0	3.35	3.35
Shear modulus, G _m (Gpa)	1.567	1.481	1.24	1.24
Poisson's ratio, v_m	0.34	0.35	0.35	0.35
Tensile strength, Y _{mT} (MPa)	69	75	80	80
Compressive strength, Y _{mC} (MPa)	250	150	120	120
Shear strength, S _m (MPa)	50	70	_	_
Tensile failure strain, ε_{mT} (%)	1.7	4	5	5
Thermal coefficient, $\alpha_m (10^{-6})^{\circ}$ C)	45	55	58	58

Material properties WWFE-2

Fibre type	IM7	T 300	A-S	S2-glass	E-Glass
Matrix	8551-7	PR-319	Epoxy I	Epoxy 2	MY750
Fibre volume fraction Vf (%)	60	60	60	60	60
Longitudinal modulus E ₁ (GPa)	165"	129	140*	52	45.6
Transverse modulus E ₂ (GPa)	8.4	5.6°	10	19	16.2
Through-thickness modulus E ₃ (GPa)	8.4	5.6°	10	19	16.2
In-plane shear modulus G12 (GPa)	5.6*	1.33°	6"	6.7ª	5.83°
Transverse shear modulus G11 (GPa)	5.6*	1.33°	6"	6.7°	5.83ª
Through-thickness shear modulus G23 (GPa)	2.8	1.86	3.35	6.7	5.7
Major Poisson's ratio Ula	0.34	0.318	0.3	0.3	0.278
Major transverse Poisson's ratio U13	0.34	0.318	0.3	0.3	0.278
Through-thickness Poisson's ratio U22	0.5	0.5	0.49	0.42	0.4
Longitudinal tensile strength X _T (MPa)	2560	1378	1990	1700	1280
Longitudinal compressive strength X _c (MPa)	1590	950	1500	1150	800
Transverse tensile strength Yr (MPa)	73	40	38	63	40
Transverse compressive strength Y _C (MPa)	185°	125°	1505	180 ^b	145 ^b
Through-thickness tensile strength Z_T (MPa)	63	40	38	50	40
Through-thickness compressive strength Z _c (MPa)	185 ^b	125	150 ^b	180 ^b	145 ^b
In-plane shear strength S12 (MPa)	90 th	97%	70 ^b	72 ^b	73 ^h
Transverse shear strength S13 (MPa)	90 ^b	97 ^b	70 ^b	72 ^b	73 ^b
Through-thickness shear strength S23 (MPa)	57	45	50	40	50
Longitudinal tensile failure strain ε_{1T} (%)	1.551	1.07	1.42	3.27	2.807
Longitudinal compressive failure strain r _{1C} (%)	1.1	0.74	1.2	2.21	1.754
Transverse tensile failure strain z ₂₇ (%)	0.87	0.43	0.38	0.33	0.246
Transverse compressive failure strain rac (%)	3.2	2.8	1.6	1.5	1.2
Through-thickness tensile failure strain E ₃₇ (%)	0.755	0.43	0.38	0.263	0.246
Through-thickness compressive failure strain (>> (%)	3.2	2.8	1.6	1.5	1.2
In-plane shear failure strain Your (%)	5	8.6	3.5	4	4
Transverse shear failure strain Y11 (%)	5	8.6	3.5	4	4
Through-thickness shear failure strain 2016 (%)	2.1	1.5	1.5	0.59	0.88
Longitudinal thermal coefficient at (10 ⁻⁶ /°C)	-1	-1	-1	8.6	8.6
Transverse thermal coefficient a2 (104/PC)	18	26	26	26.4	26.4
Through-thickness thermal coefficient α_{1} (10 ⁻⁴ /°C)	18	26	26	26.4	26.4
Stress free temperature (°C)	177	120	120	120	120

*Nonlinear behaviour and stress-strain curves and data points are provided. *Please note that values are considered to be low, compared with typical data for the same material published somewhere dise or quoted by the manufacturers.*V have not attemposed to change them in order to facilitate a comparison with test data in Part B of the exercise.

UNIVERSITY OF WYOMING

Material properties WWFE-2

Fibre type		IM7	T300	AS	S2-glass	E-Glass
Longitudinal modulus E _{fl} (GPa)			231	231	87	74
Transverse modulus Ep2 (GPa)		19	15	15	87	74
Transverse modulus E ₁₃ (GPa)		19	15	15	87	74
In-plane shear modulus G _{f12} (GPa)		27	15	15	36	30.8
Major Poisson's ratio util2		0.2	0.2	0.2	0.2	0.2
Major Poisson's ratio u ₁₁₃		0.2	0.2	0.2	0.2	0.2
Transverse shear modulus G ₁₂₃ (GPa)		7	7	7	36	30.8
Longitudinal tensile strength X_{fIT} (MPa)		5180	2500	3500	2850	2150
Longitudinal compressive strength X_{flc} (MPa)		3200	2000	3000	2450	1450
Longitudinal tensile failure strain ε_{flT} (%)		1.87	1.086	1.515	3.27	2.905
Longitudinal compressive failure strain $\varepsilon_{fl,C}$ (%)			0.869	1.298	2.82	1.959
Longitudinal thermal coefficient α_{fl} (10 ⁻⁶ /°C)			-0.7	-0.7	5	4.9
Transverse thermal coefficient α_{D} (10 ⁻⁶ /°C)			12	12	5	4.9
Through-thickness thermal coefficient α_{β} (10 ⁻⁶ /°C)			12	12	5	4.9
Matrix type	8551-7	ероху	PR319 epoxy	Epoxy I	Epoxy 2	MY750
Elastic modulus E _m (GPa)	4.08		0.95ª	3.2	3.2	3.35
Elastic shear modulus Gm (GPa)	1.478		0.35°	1.2	1.2	1.24
Elastic Poisson's ratio v_m	0.38		0.35	0.35	0.35	0.35
Tensile strength Y_{mT} (MPa)	99		70	85	73	80
Compressive strength Ymc (MPa) 130			130	120	120	120
Shear strength S _m (MPa) 57			41	50	52	54
Tensile failure strain ε_{mT} (%) 4.4			7.3	2.65	2.5	2.7
Compressive failure strain ε_{mC} (%) 9			13.6	3.75	5	5
Shear failure strain γ_m (%) 5.1			11.5	4.16	6	6
Thermal expansion coefficient $\alpha_m (10^{-6})^{\circ}$ C) 46.7			60	58	58	58

These values are considered to be low, compared with typical data for the same material published somewhere else or quoted by the manufacturers. We have not attempted to dauge them in order to facilitate a comparison with test data in Part B of the exercise. The behaviour of materials PRIJB and Epoy 1 is taken as linear.

World Wide Failure Exercises

- WWFEs are composite failure benchmarks for GRPs and CFRPs
- Various failure theories were tested against experimental evidence
- Experiments include <u>strength envelopes</u> for laminae and laminates
- <u>stress-strain curves</u> for laminae and laminates
- Only lamina strength envelopes were predicted

UNIVERSITY OF WYOMING

Outcomes of WWFE-1 & WWFE-2

Exercise	Leading theories
WWFE-I	Puck, Zinoviev, Tsai and Bogetti
WWFE-II	Carrere, Pinho, Cuntze and Puck

- Usage of lamina quantities don't permit the use of physics
- Calibration is cumbersome due to large number of input parameters (50-75) parameters

<u>CFRP lamina under combined transverse and</u> <u>shear loading</u>

<u>CFRP lamina under combined transverse and</u> <u>shear loading</u>

<u>CFRP lamina under combined transverse and</u> <u>shear loading</u>

<u>GRP lamina under combined through</u> <u>thickness and longitudinal loading</u>

<u>GRP lamina under combined through</u> <u>thickness and longitudinal loading</u>

<u>CFRP lamina under combined through</u> <u>thickness and longitudinal loading</u>

<u>CFRP lamina under combined hyrdostatic</u> <u>and shear loading</u>

<u>GRP lamina under combined longitudinal and</u> <u>transverse loading</u>

<u>GRP lamina under combined transverse and</u> <u>shear loading</u>

<u>CFRP lamina under combined transverse and</u> <u>shear loading</u>

<u>GRP lamina under combined longitudinal and</u> <u>transverse loading</u>

<u>CFRP lamina under combined hyrdostatic</u> <u>and shear loading</u>

<u>GRP lamina under combined through</u> <u>thickness and longitudinal loading</u>

