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On the Use of Volume Average Constituent Stresses for 
Predicting Failure in Composites 
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University of Wyoming, Laramie, WY, 82071 

The complexity of the multiple failure mechanisms exhibited by unidirectional fibrous 
composites makes failure prediction a daunting challenge for the analyst. One approach to 
better identify failure mechanisms is the use of volume average constituent stresses of the  
composite and directly predicting constituent failure. However, the total strain energy is not 
conserved by volume average constituent quantities (stresses and strains). In this study an 
expression is derived to quantify this missing energy, termed the interaction energy, with the 
hope of using this energy to enhance the capability of failure prediction using volume 
average quantities. The variation of interaction energy is studied with respect to the fiber 
volume fraction, matrix modulus, and biaxial load ratio for typical carbon-epoxy systems. 
The qualitative relationship between distribution of strain and the interaction energy is 
analyzed. Finally, the matrix contribution to the interaction energy is examined. 

Nomenclature 
U   =   total composite strain energy 

fU   =   strain energy contribution of the fiber 

mU  =   strain energy contribution of the matrix 

cV     =   composite volume 

fV     =   total fiber volume 

fV     =   total fiber volume fraction  

mV     =   total matrix volume 

mV     =   total matrix volume fraction 

fΦ  =   fiber interaction energy 

mΦ  =   matrix interaction energy 

ε  =   local strain 
ε~  =   fluctuation in strain 

ε  =   mean strain in the constituent 
Cε  =   composite strain 
fε  =  strain induced in the fiber 
mε  =   strain in the matrix constituent 
Cσ  =   composite stress 
fσ  =   stress induced in the fiber 
mσ  =   stress in the matrix constituent 
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I. Introduction 
 IBROUS composites exhibit a range of complex failure behaviors. A variety of theories have been proposed to 
predict failure in composites [1]. They may be broadly classified into three groups [2], limit or noninteractive 

theories (maximum stress, maximum strain), interactive theories such as Tsai-Hill and Tsai-Wu [3] and partially 
interactive theories  such as Hashin-Rotem and Puck [4]. Most commonly used failure theories consider individual 
laminate layers (plies) as building blocks and employ data from simple tests on isolated laminae to predict failure of 
the entire laminate, a technique called meso-modeling. A well-known composite failure benchmark, the World-
Wide Failure Exercise (WWFE), lists five promising theories [5]: Puck [4, 6], Zinoviev [7, 8], Tsai [9, 10], Cuntze 
[11, 12] and Bogetti [13, 14] for predicting failure in composites which employ the meso-modeling technique. It is 
well known, that the volume average quantities (stresses and strains) of a lamina do not represent the complex 
stress/strain state of the constituents, which will be very different than the lamina stresses. But failure of a composite 
material is always the result of constituent failure, so taking into consideration the stress/strain of the constituents is 
of vital importance. Micromechanics based theories overcome the drawbacks of meso-modeling by using volume 
average constituent quantities for predicting failure. Micro-modeling involves using experimental data of the 
properties of the constituents of a composite material to predict the behavior of individual laminae, progressing to 
the laminate and eventually the entire structure. It is apparent that these theories, when fully developed may have the 
capability of predicting the response of the entire composite structure even in the absence of lamina test data. 
Chamis [15, 16], Mayes [17, 18] and Huang [19, 20] are the three micromechanics based failure theories that were 
judged to be moderate as compared to other theories in the WWFE [5]. Other examples of constituent based failure 
theories are given elsewere [21-28].  
 Regardless of the level of approach (micro or meso) all the theories predict lamina failure relatively well for 
simple load states, but their deficiencies begin to appear for multi-ply laminates under multiaxial loading, especially 
with in the presence of non-linearity and large deformations [5]. However, material inhomogeneity introduces 
stress/strain fluctuations in the constituents of a composite material. Volume average constituent quantities do not 
acknowledge these fluctuations and as a result, the strain energy computed from the constituent volume average 
quantities may not account for all the strain energy of the composite. Consequently, any failure theory that depends 
on volume average constituent stresses must be augmented to incorporate this “missing energy” for improved 
predictions of composite failure. The focus of this work is to investigate the nature of this “missing energy” and its 
dependence on fiber volume fraction and material properties under different types of loading conditions. 
 
 

II. Theoretical Motivation 
Consider a general composite material consisting of a fiber and matrix phase. Let U denote the strain energy of 

this composite under an arbitrary load state. Assuming linear elasticity, this energy can be represented 
mathematically as  

         ∫=
CV
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where C
ijσ and C

ijε are the composite stresses and the strains, respectively, where repeaded ij indicies are summed and 

integration performed over the entire volume of the composite cV . Equation (1) can be readily written in terms of 

average composite properties [29]  
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where the terms in the brackets denote volume average quantities. Equation (1) may be separated into contributions 
from the fiber and the matrix as  
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where 
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where the superscripts f and m  denote quantities for fiber and matrix, respectively. In contrast to using composite 

averaged stresses, when using constituent average stresses and strains, all of the strain energy is not accounted for by 
summing the volume average contributions. This unaccounted strain energy is termed interaction energy. To 
quantify this the strain energies in the fiber and matrix are written as 
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where fΦ  and mΦ  are the interaction energy contribution from each constituent strain energies of the fiber and the 

matrix, respectively. Adding Eqs. (6) and (7) gives the total strain energy of the composite as 
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where 
 

            mmff VVU Φ+Φ=∆ .                                           (10) 

   
The constituent-specific componenets of the interaction energy can be computed by making use of the fact that 
inhomogeneties of the material properties give rise to fluctuations in strain ε~ therby giving rise to fluctuations in 
stress σ~  in the constituents. This may be represented as  
 

               εεε −=~                                                                                  (11) 

 
      σσσ −=~                                                                                 (12) 

 

where ε  and σ  represent the local strain and stress, and ε  and σ represent the mean strain and stress, 

respectively. To develop the functional form for the interaction energy, the fiber interaction energy is developed 
here first. The matrix interaction energy can be derived in a similar manner. Substituting Eqs. (11) and (12) in Eq. 
(4) gives 
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Expanding Eq. (13) yields 
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which on further simplication gives 

 

                               ∫∫∫ +++=
fff V

f
f

ij
f

ij

V

f
f

ij
f

ij

V

f
f

ij
f

ijf
f

ij
f

ijf VdVdVdVU σεεσεσεσ ~
2

1~
2

1~~
2

1

2

1
            (15) 

 

since f
ijσ~ and f

ijε~ are local fluctuations, the average fluctuation over the entire volume of the fiber is always  

zero and so Eq. (15) reduces to  
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equating Eqs. (6) and (16) gives the expression for interaction energy of the fiber as  
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Substituting Hooke’s law into Eq. (17) allows the interaction energy to be written entirely in terms of strain 
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assuming transverse isotropy and expanding Eq. (18) in i,j,k and, l yields 
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The interaction energy for the matrix can be similarly shown to be  
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Eqs. (19) and (20) represent the quantification of the interaction energy between fiber and matrix, but combined they 
contain a total of 18 terms. The focus of the subsequent modeling effort is to determine the significance of the 
interaction energy relative to the total strain energy, to investigate how the interaction energy may change as a 
function of loading and material properties, and to attempt to establish whether one constitutent is the dominant 
contributor to interaction energy. 
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Figure 1:  RVE with hexagonal fiber packing for fiber volume 
fraction of 0.6 

 

Table 1: Baseline material properties of the fiber 
 
Material Type )(1 GPaE  )(2 GPaE  )(12 GPaG  12ν  

23ν  

AS4 Transversely isotropic 235 14 28 0.2 0.25 
 

III. Modeling 

A. Overview 
The goal of the modeling effort is to 

investigate the variation of interaction energy 
U∆ with fiber volume fraction and the 

elastic moduli of the constituents under 
different loading conditions and to evaluate 
specific contributions of each constituent. 
This was accomplished by constructing and 
exercising a finite element model using the 
commercially available FEA software 
ABAQUS. For the purpose of analysis a 
representative volume element (RVE) having 
hexagonal fiber packing was considered. The 
RVE is rectangular and has one fiber section 
at the center and a quarter section of fiber at 
each vertex. The rest of the RVE consists of 
the matrix. This is shown in Fig. 1, where the 
fiber region is shaded in dark green 
surrounded by a gray matrix region. The 
fibers are assumed to be unidirectional along 
the 1-axis. 

B. Material Properties 
The fiber material selected for all the 

simulations was carbon (AS4). The detailed 
fiber properties are taken from [29] and 
presented in Table 1. For all the simulations, 
the fiber properties were kept constant. The matrix was assumed to be isotropic with a Poisson’s ratio of 0.34. Three 
types of variations were studied. First, the fiber volume fraction was varied from 0.05 to 0.85. In the second study, 
the matrix modulus was varied from 1% to 120% of the fiber modulus (in the fiber direction). A matrix modulus of 
around 0.0204E11fiber (Em = 4.8 GPa) corresponds to epoxy 3501-6. Results were obtained for four different fiber 
volume fractions of 0.05, 0.25, 0.6 and 0.85. In the third study, four types of biaxial loads were applied, the matrix 
modulus and fiber volume fraction being constant at 0.01702E11fiber  (Em = 4.0 GPa) and 0.6 respectively. 

C. Boundary Conditions 
Periodic boundary conditions were applied on all RVE edges, faces, and corners. This was achieved by 

extracting nodes from the RVE after meshing, reordering them properly, and using equation constraints for the node 
sets. For the first two studies, six loads were applied to the RVE in separate steps. These loads were in the form of 
strains, which were achieved by fixing displacements of the control nodes that render movement to faces in three 
directions. A strain 
of 0.01 was applied 
in each load case, 
with all other 
strains held fixed at 
zero. 
 In the third study, strains were applied so that they produced a biaxial load of 10MPa. The RVE was subjected to 
five types of biaxial loads: 3322 σσ − , 2212 σσ − , 2312 σσ − , 1312 σσ −   and lastly, 2223 σσ − . These loads were 

applied such that they corresponded to the x- and y-components of the biaxial load represented as the radius of a 
circle as shown in Fig. 2 and θ  is varied from 0° to 180°. The two uniaxial loads required to generate the biaxial 
load state can be expressed as 
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Figure 2: Decomposition of biaxial load into 

its components 

 
Figure 3: Variation of interaction energy with fiber volume fraction 

 

             θσσ cos=I                     (21) 

 
             θσσ sin=II                     (22) 

 
where σ  is the resultant bi-axial load and, Iσ and IIσ  are the corresponding uniaxial loads. 

 

IV. Results and Discussion 
As discussed above, three series of simulations were carried out to 

quantify the dependencies of the interaction energy on material 
properties, fiber volume fraction, and loading conditions: (i) constant 
matrix and fiber modulus with varying fiber volume fraction, (ii) varying 
matrix modulus for four different fiber volume fractions, and (iii) 
constant material and microstructure properties with varying biaxial 
loading conditions.  

A. Variation of Interaction Energy with Fiber Volume Fraction 
For the first series of simulations, the matrix modulus was fixed at 1% 

of the fiber-direction fiber modulus, GPaEm 35.2= . The fiber volume 

fraction was varied from 0.05 to 0.85.Volume average quantities 
(stresses, strains and stiffness) of the composite were extracted from the 
model and then the total strain energy for the composite was calculated 
using Eq. (2). The volume average quantities (stresses, strains and 
stiffness) of the constituents were also extracted. From composite and 
constituent strains, constituent strain fluctuations were computed using 
Eq. (11). Substituting these strain 
fluctuations and the stiffness in Eqs. (19) 
and (20) gives fΦ and mΦ . The total 

interaction energy was computed using 
Eq. (10). Interaction energies were 
computed for all the six load cases 
individually. The interaction energy 
fraction )/( UU∆ was calculated for all 

the fiber volume fractions and each load 
case. The properties of the RVE were 
transversely isotropic and were identical 
in the 2- and 3-direction and in 12- and 
13-direction. As a result of this, 
interaction energy of four (and not all 
six) load cases are unique. 

Figure 3 shows U∆  as a function of 
fiber volume fraction and load case. 
Three features of these data are of 
particular interest. First, the interaction 
energy is strongly dependent on the load 
case and it can be very significant. For 
unidirectional (tension-11) loading, the 
interaction energy is negligible. In 
contrast, the interaction energy can be 
more than 30% of the total strain energy 
for in-plane shear loading (shear-12). 
Second, for typical volume fractions, 
interaction energy increases with 



 
American Institute of Aeronautics and Astronautics 

 

 

7

 
 

 
 

Figure 4: (a) Stress plot for load case tension-11 (b)  Stress plot for load case shear-12 (c) Stress plot for load 
case tension-22 (d)  Stress plot for load case shear-23 

 
 
 
 
 
 
 

increasing volume fraction. Finally, transverse tension (tension-22) and transverse shear (shear-23) show a peak at a 
fiber volume fraction of about 0.65, very close to typical fiber volume fractions in aerospace-grade composites. This 
behavior can be understood from stress plots of an RVE with a fiber volume fraction of 0.6. In case of tension-11, 
shown in Fig. 4a, the stress distribution is uniform in each constituent throughout the structure. Thus in this load 
case strain fluctuations are minimal. Equations. (19) and (20) show that fΦ  and mΦ  are proportional to strain 
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Figure 5 : Probability distribution function for strains for different load cases 

fluctuation )~(ε , which in turn gives rise to stress fluctuations)~(σ in the constituent. Since there are minimal stress 

(strain) fluctuations in this load case fΦ and mΦ  are almost zero for this load case. Consequently the interaction 

energy U∆  is also zero which is verified by the plot. 
In case of shear-12, shown in Fig. 4b, the stress (strain) fluctuation is largest. Consequently the interaction 

energy is maximum for this 
case as seen from the plot. This 
is of vital importance because 
this peak of interaction energy 
occurs roughly around the 
commonly used fiber volume 
fraction of 0.60. In the load 
cases tension-22 and shear-23, 
shown in Fig. 4c and Fig. 4d, 
respectively, the stress 
fluctuations are larger than 
tension-11 and so they have 
interaction energy higher than 
tension-11. Figure 5 shows the 
distribution of strain in load 
cases shear-12, tension-22 and 
shear - 23. It can be seen that 
the distribution of strain in 
load case shear-23 is smaller 
than shear-12 but larger than 
that in load case tension-22, 
consequently it has an 
interaction energy less than 
load case shear-12 but more 
than tension-22 which is 
verified by the plot in Fig. 3. It 
can also be seen that out of the 
three load cases that have 
interaction energy, tension-22 
has the smallest distribution of 
strain and so it has the smallest 
interaction energy. 

 
B.  Variation of interaction energy with matrix modulus 

In order to investigate the variation of the interaction energy with matrix modulus, the matrix modulus was 
varied from 1% to 120% of the fiber-direction fiber modulus. Results were obtained for four fiber volume fractions 
(0.05, 0.25, 0.60, and 0.85). The interaction energy fraction )/( UU∆ was plotted as a function of the matrix 

modulus.  Figure 6 shows the variation of interaction energy with matrix modulus for the four unique load cases. 
Fig. 6a shows the variation of interaction energy with matrix modulus in load case tension-11. For this load case, the 
interaction energy for all volume fractions is negligible. For the other three load cases, shown  in Fig. 6b-d, a general 
trend is observed: an  initial increase in matrix modulus results in a decrease in interaction energy until a minimum 
is reached, after which additional increase in matrix modulus results in an increase in interaction energy. The 
minimum of the interaction energy occurs when the relevant fiber and matrix stiffnesses are the closest. For the load 
case in the transverse direction, shown in Fig. 6b, the interaction energy reaches a minimum when the matrix 
modulus is 5% of the fiber-direction fiber modulus, corresponding to a matrix modulus of 11.75 GPa, which is close 
to the fiber modulus in the transverse direction of 14 GPa.  For a load case of shear-12, shown in Fig. 6c, the 
interaction energy reaches a minimum when the matrix modulus is 30% of the fiber-direction fiber modulus, 
corresponding to a matrix shear modulus of 26.31 GPa, which is close to the fiber shear modulus in 12-direction of 
28 GPa. For a load case of shear-23, shown in Fig. 6d, the interaction energy reaches a minimum when the matrix  
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Figure 5: (a) Variation of interaction energy with matrix modulus in load case tension-11 (b) Variation of interaction 
energy with matrix modulus in load case tension-22 (c) Variation of interaction energy with matrix modulus in load 

case shear-12 (d) Variation of interaction energy with matrix modulus in load case shear-23 
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Figure 7 : Variation of interaction energy with biaxial loads. 

modulus is 5% of the fiber-direction 
fiber modulus, corresponding to a 
matrix shear modulus of 4.38 GPa, 
which is close to the fiber shear 
modulus in 23-direction of 5.6 GPa. 
Thus in general, it can be concluded 
that, for near iso-stress loadings, the 
interaction energy is proportional to 
the difference in the fiber and matrix 
modulus in the loading directions.   

 
 
C. Variation of interaction energy 
with biaxial loading 
 In reality, a composite 
microstructure is seldom subjected to 
uniaxial stresses and so it is 
important to study the behavior of 
interaction energy under multiaxial 
load states. Fig. 7 shows the 
variation of interaction energy under 
five types of biaxial loadings: 

3322 σσ − , 2212 σσ − , 2312 σσ − , 

1312 σσ −   and lastly, 2223 σσ − . 
 As discussed in Sections A and 
B, the interaction energy for tensile 
loading in the 1-direction is negligible. Thus it will not contribute to the interaction energy of the second uniaxial 
load applied in the fiber direction. The fiber volume fraction and the matrix modulus were kept constant at 0.6 and 
4.0 GPa, respectively. The biaxial load is represented by the radius of a circle as shown in Fig 2. θ  is the angle 
made by the radius of the circle with the x-axis which is varied from 0° to 180° so that the effect of biaxial loding on 
the interaction energy could be quantified. Under a biaxial shear loading in the 12- and 13-directions, it can be 
observed that the interaction energy does not change but remains constant at 27% of the total strain energy. When 
the RVE was subjected to a 3322 σσ − biaxial load the interaction energy reached a minimum at 45°. This is because 

at these two angles, the two stresses are equal to each which results in uniform distribution of strains and stresses in 
the constituents thereby producing negligible interaction energy shown in Fig. 7.  
 In the remaining four cases, 2312 σσ − , 1312 σσ − , 2212 σσ − , 2223 σσ −  the maximum interaction energy occurs 

at 90°, which corresponds to a pure shear loading. This result is remarkable: any additional applied transverse load 
reduces the interaction energy that would be computed based on the most significant shear component. The 
interaction energy can thus be readily bounded by evaluating only a small number of load states. 

 
D. Contribution of Matrix to the Interaction Energy 
  Interaction energy is a result of material inhomogeneity, which gives rise to strain fluctuations in the 
constituents. In a two phase composite consisting of fiber and matrix phase, both the fiber and matrix contribute to 
interaction energy as seen in Eq. (10). The matrix modulus was kept constant at 2.35 GPa and contribution of the 
matrix to interaction energy was computed. Fig. 8 shows the matrix contribution to interaction energy plotted 
against fiber volume fraction. The results are remarkable: upto typical fiber volume fractions, the matrix accounts 
for vast majority of interaction energy. For a commonly used fiber volume fraction of 0.6, the matrix contributes 
almost entirely (more than 99%)  to the interaction energy of the composite for shear loading in the 12-direction. 
Even for load cases tension-22 and shear-23, matrix contribution to interaction is about 90% . This result if of vital 
importance since it allows us to alltogether neglect the interaction energy of the fiber and focus on modifying the 
constituent based matrix failure theory.  
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Figure 8: Variation of contribution of matrix to interaction energy 
with fiber volume fraction 

V. Summary and Conclusions 
Firbrous composites are rapidly 
supplanting conventional homogenous 
materials like metals in many 
industries including aerospace, 
automobile, marine and sports since 
they are not only lightweight and 
strong but also chemical and corrosion 
resistant. Thus precise estimation of 
composite properties like yield 
strength, fracture strength, and 
lifetime has become important. 
Accurate failure prediction is therefore 
critical in our efforts towards 
exploiting the promising advantages 
offered by composite materials. 
Although volume average constitutent 
properties (stresses and strains) may 
not account for all the strain energy of 
the composite, they are the critical 
quantities that drive composite failure 
and are required for genuine physics-
based modeling of composites. In this 
study, an expression was derived to 
quantify the interaction energy and its 
dependence on fiber volume fraction 
and material properties under different 
types of loading conditions was examined in hopes of augmenting the use of volume average constituent quantities. 
Three parametric studies were performed and the interaction energy was computed. It was found that the interaction 
energy is maximum for composite shear loading in the transverse direction (shear-12) because of maximum strain 
fluctuations. For typical aerospace-space grade composites, at a common fiber volume fraction of 0.6, the interaction 
energy is about 30%. Moreover, for such systems, matrix is the major contributor to interaction energy. Interaction 
energy is directly related to material inhomogeneity and it is always minimum when the relevant fiber and matrix 
stiffnesses are closest. Interaction energy remains constant under biaxial shear loading. For transverse biaxial 
loading, interaction energy is minimum when both the transverse loads are equal and is maximum for tension-
compression loading.  

Failure in composite materials is ultimately a result of constituent failure. Consequently, micromechanics-based 
failure theories often utilize volume average constituent quantities to apply failure criteria to constituents directly. 
For accurate failure predictions, any failure theory that employs volume average constituent quantities for failure 
prediction must incorporate interaction energy. This study has shown that regardless of fiber volume fraction, matrix 
modulus, or loading conditions, the matrix is the dominant contributor to interaction energy. This result is 
remarkable because efforts may be channeled towards matrix failure augmentation for superior failure prediction. 
This study not only elucidates the causes and nature of interaction energy but it also takes us one step closer to 
realizing  the goal of designing with composite materials with the confidence used in designing with more traditional 
materials.   
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