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The complexity of the multiple failure mechanisms exhibited by unidirectional fibrous
composites makes failure prediction a daunting challenge for the analyst. One approach to
better identify failure mechanisms is the use of volume average constituent stresses of the
composite and directly predicting constituent failure. However, the total strain energy is not
conserved by volume average constituent quantities (stresses and strains). In this study an
expression isderived to quantify this missing energy, termed the interaction energy, with the
hope of using this energy to enhance the capability of failure prediction using volume
average quantities. The variation of interaction energy is studied with respect to the fiber
volume fraction, matrix modulus, and biaxial load ratio for typical carbon-epoxy systems.
The qualitative relationship between distribution of strain and the interaction energy is
analyzed. Finally, the matrix contribution to the interaction energy is examined.

Nomenclature

U = total composite strain energy

U; = strain energy contribution of the fiber
Un = strain energy contribution of the matrix
Y, = composite volume

Yy = total fiber volume

Vs = total fiber volume fraction

Y = total matrix volume

Vi = total matrix volume fraction

(OF = fiber interaction energy

(OF = matrix interaction energy

£ = local strain

£ = fluctuation in strain

(€) = mean strain in the constituent

€ = composite strain

el = strain induced in the fiber

em = strain in the matrix constituent

o° = composite stress

of = stress induced in the fiber

o™ = stress in the matrix constituent
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I. Introduction

IBROUS composites exhibit a range of complex failnehaviors. A variety of theories have been psedao

predict failure in composites [1]. They may be loligaclassified into three groups [2], limit or notéractive
theories (maximum stress, maximum strain), intéractheories such as Tsai-Hill and Tsai-Wu [3] aaitially
interactive theories such as Hashin-Rotem and Rckost commonly used failure theories consiohelividual
laminate layers (plies) as building blocks and empmlata from simple tests on isolated laminae &aligt failure of
the entire laminate, a technique called meso-mogeld well-known composite failure benchmark, then-
Wide Failure Exercise (WWFE), lists five promisititgories [5]: Puck [4, 6], Zinoviev [7, 8], Tsai,[20], Cuntze
[11, 12] and Bogetti [13, 14] for predicting faiuin composites which employ the meso-modelingrteple. It is
well known, that the volume average quantitieseéstes and strains) of a lamina do not representdh®lex
stress/strain state of the constituents, whichlélivery different than the lamina stresses. Bltriaof a composite
material is always the result of constituent faluso taking into consideration the stress/strathe constituents is
of vital importance. Micromechanics based theodesrcome the drawbacks of meso-modeling by usidgme
averageconstituent quantities for predicting failure. Micro-modelingvolves using experimental data of the
properties of the constituents of a composite naltér predict the behavior of individual lamingepgressing to
the laminate and eventually the entire structuris. apparent that these theories, when fully dgyed may have the
capability of predicting the response of the entimposite structure even in the absence of larest data.
Chamis [15, 16], Mayes [17, 18] and Huang [19, &@ the three micromechanics based failure thethaswere
judged to be moderate as compared to other theioritee WWFE [5]. Other examples of constituentduhfailure
theories are given elsewere [21-28].

Regardless of the level of approach (micro or medlothe theories predict lamina failure relatyeatell for
simple load states, but their deficiencies begiagpear for multi-ply laminates under multiaxishdling, especially
with in the presence of non-linearity and largeodefations [5]. However, material inhomogeneity adtuces
stress/strain fluctuations in the constituents ebaposite material. Volume average constituenntjies do not
acknowledge these fluctuations and as a resultstitaén energy computed from the constituent volawerage
guantities may not account for all the strain eparfithe composite. Consequently, any failure thigbat depends
on volume average constituent stresses must be emigch to incorporate this “missing energy” for ined
predictions of composite failure. The focus of thisrk is to investigate the nature of this “missewgergy” and its
dependence on fiber volume fraction and materigperties under different types of loading condigion

Il. Theoretical Motivation

Consider a general composite material consisting fither and matrix phase. L&t denote the strain energy of
this composite under an arbitrary load state. Assgmiinear elasticity, this energy can be represent
mathematically as

1
Ve

where crijc and‘sijC are the composite stresses and the strains, resggctvhere repeadeindicies are summed and

integration performed over the entire volume of tioenpositd4 . Equation (1) can be readily written in terms of

average composite properties [29]
1

U :E<a§? ><gijc >vc @)

where the terms in the brackets denote volume geegiaantities. Equation (1) may be separated iotdributions
from the fiber and the matrix as

U=U, +U,, 3)
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where

1
Uy =§_[Uijf & AV (4)
v
u == jaf"sf"dv (5)
m=5 ij €ij Y¥m
Vin

where the superscripté and m denote quantities for fiber and matrix, respedyivin contrast to using composite

averaged stresses, when using constituent avetr@gses and strains, all of the strain energy isocounted for by
summing the volume average contributions. This coacted strain energy is termed interaction enefgy.
quantify this the strain energies in the fiber amatrix are written as

Usg :%<0-ijf ><5uf >Vf + OV (6)
Um =%<Uign><£ign>vm + cDm\7Lm (7)

where ®; and @, are the interaction energy contribution from eeshstituent strain energies of the fiber and the
matrix, respectively. Adding Eqgs. (6) and (7) gitles total strain energy of the composite as

U +tUp, =%<Uijf ><5ijf >Vf +%<Ui?1><5i?1>vm OV + DM, (8)
U;+U,, =%<0'ijf ><£ijf >vf +%<o—i?“><£i?“>vm +AU ©)
where
AU = ® M + O M (10)

The constituent-specific componenets of the int@wacenergy can be computed by making use of tle tfaat
inhomogeneties of the material properties give tiséluctuations in straire therby giving rise to fluctuations in
stresse in the constituents. This may be represented as

€ £—<s> (11)
6=0- <6> (12)

where € and ¢ represent the local strain and stress, éa)d and <c> represent the mean strain and stress,

respectively. To develop the functional form foe timteraction energy, the fiber interaction eneigyyleveloped

here first. The matrix interaction energy can beveel in a similar manner. Substituting Eqs. (1a) §12) in Eq.
(4) gives

o =3 [l (o et (2 o @
A
Expanding Eq. (13) yields
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:_\;[ oy )ef Javi + Zj“fu'f £j d¥ +%J.<Uijf )& dv +%\;[5i; (& )aw (14)
which on further simplication gives

U, =%<ai{><gi{>vf +%j5—i{:§ijfdvf +%< /) j vy += (g j v, (15)
vf vf

since 5{ and Eijf are local fluctuations, the average fluctuationrdbe entire volume of the fiber is always
zero and so Eq. (15) reduces to

u, :%<aijf el vy +% [a!a v (16)

equating Egs. (6) and (16) gives the expressiomferaction energy of the fiber as

®, -—jaf*fdvf (17)
v,

Substituting Hooke’s law into Eq. (17) allows timeiraction energy to be written entirely in termstoain

v[Cukl gljf Ek{ de (18)

f

assuming transverse isotropy and expanding Eq.i(ig)k and,| yields

1 le1< & )2> +C}, <(£22)2> + c?f3< (532)2> +2C}(E) L) +2C(E] EL)+

o =1 (19)
f 2 2C2f?:<§2f2 > + C12<(y12) > + le3< (}712 )2> + C2f3< (}72f3)2>
The interaction energy for the matrix can be sirhilahown to be
| cifenf ) ven(lenf) + il (esF )~ 2cn(en @p) - 2oy &) + -
m== 20

2| ac(a ) e (7)) +ci(af) + (S )

Egs. (19) and (20) represent the quantificatiothefinteraction energy between fiber and matrix,dmmbined they
contain a total of 18 terms. The focus of the sgbsat modeling effort is to determine the significa of the
interaction energy relative to the total strainrgye to investigate how the interaction energy nchgnge as a
function of loading and material properties, andatempt to establish whether one constitutenhés dominant
contributor to interaction energy.
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I11. Modeling

A. Overview

The goal of the modeling effort is to
investigate the variation of interaction energy
AU with fiber volume fraction and the
elastic moduli of the constituents under
different loading conditions and to evaluate
specific contributions of each constituent.
This was accomplished by constructing and
exercising a finite element model using the
commercially available FEA software
ABAQUS. For the purpose of analysis a
representative volume element (RVE) having
hexagonal fiber packing was considered. The
RVE is rectangular and has one fiber section
at the center and a quarter section of fiber at
each vertex. The rest of the RVE consists of
the matrix. This is shown in Fig. 1, where the
fiber region is shaded in dark green
surrounded by a gray matrix region. The 2
fibers are assumed to be unidirectional along
the 1-axis.

— Fiber

Matrix

B. Material Properties

The fiber material selected for all the
simulations was carbon (AS4). The detailed Figure1: RVE with hexagonal fiber packing for fiber volume
fiber properties are taken from [29] and fraction of 0.6
presented in Table 1. For all the simulations,
the fiber properties were kept constant. The matds assumed to be isotropic with a Poisson’s Htih34. Three
types of variations were studied. First, the fibelume fraction was varied from 0.05 to 0.85. |e Second study,
the matrix modulus was varied from 1% to 120% ef fiber modulus (in the fiber direction). A matrxodulus of
around 0.0204kE;e (En = 4.8 GPa) corresponds to epoxy 3501-6. Resulte wbtained for four different fiber
volume fractions of 0.05, 0.25, 0.6 and 0.85. ka tthird study, four types of biaxial loads were lgggh the matrix
modulus and fiber volume fraction being constar@.@i702E . (Er= 4.0 GPa) and 0.6 respectively.

C. Boundary Conditions

Periodic boundary conditions were applied on allER¥dges, faces, and corners. This was achieved by
extracting nodes from the RVE after meshing, reondethem properly, and using equation constraimtgshe node
sets. For the first two studies, six loads wereliagdo the RVE in separate steps. These loads imeifee form of
strains, which were achieved by fixing displacemenitthe control nodes that render movement tosfacehree
directions. A strain
of 0.01 was applied Table1: Basdline material properties of the fiber
in each load case,

with  all  other | Material Type E,(GPa) | E,(GPa) | G,(GPa) | Vi, | Vyg
strains held fixed at ™Ay Transversely isotropic 235 14 28 0.2 0J25
zero.

In the third study, strains were applied so thaytproduced a biaxial load of 10MPa. The RVE wdgexcted to
five types of biaxial loadso,, — 033, 015 =0y, Oy» =03, 0y, — 03 and lastly,o,;—0,,. These loads were
applied such that they corresponded to the x- andnyponents of the biaxial load represented agabiis of a
circle as shown in Fig. 2 anl is varied from 0° to 180°. The two uniaxial loaggjuired to generate the biaxial
load state can be expressed as
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o, =ocosd (21)
g, =osinéd (22)

where o is the resultant bi-axial load and; ando,, are the corresponding uniaxial loads.

IV. Resultsand Discussion A

As discussed above, three series of simulation® warried out to
qguantify the dependencies of the interaction eneqy material 7 ... .
properties, fiber volume fraction, and loading citinds: (i) constant :
matrix and fiber modulus with varying fiber volurfraction, (ii) varying Oul © :
matrix modulus for four different fiber volume fitaans, and (iii) :
constant material and microstructure propertiesh wiarying biaxial 0 : > X
loading conditions. O

A

A. Variation of Interaction Energy with Fiber Volume Fraction
For the first series of simulations, the matrix ming was fixed at 1%

of the fiber-direction fiber modulug,,, = 235GPa. The fiber volume

fraction was varied from 0.05 to 0.85.Volume averaguantities
(stresses, strains and stiffness) of the compesre extracted from the
model and then the total strain energy for the cusiip was calculated - o )
using Eq. (2). The volume average quantities (sé®s strains and Figure2: Decomposition of biaxial load into
stiffness) of the constituents were also extract&wm composite and Its components

constituent strains, constituent strain fluctuagiomere computed using

Eq. (11). Substituting these strain
fluctuations and the stiffness in Eqgs. (19)
and (20) gives®;and @, . The total

<
<

0.7
interaction energy was computed using Variation of interaction energy (AU)
Eg. (10). Interaction energies were . .
computed for all the six load cases 0.6+ with fiber volume fraction
individually. The interaction energy
fraction (AU /U)was calculated for all ® Tension—11
the fiber volume fractions and each load 0.5t : rgﬁgﬁg};zz
case. The properties of the RVE were = Shear—23
transversely isotropic and were identical 0.4

in the 2- and 3-direction and in 12- and =

13-direction. As a result of this, = q (<

interaction energy of four (and not all < <] <4<

six) load cases are unique. <
Figure 3 showsAU as a function of >

fiber volume fraction and load case. 0.2 < <

Three features of these data are of | <

particular interest. First, the interaction <4 g B R Eg

energy is strongly dependent on the load 0.1F < N ; : * kR K ko

case and it can be very significant. For < " [ ] |

unidirectional (tension-11) loading, the 4 » N

interaction energy is negligible. In 0

contrast, the interaction energy can be 0O 01 02 03 04 05 06 07 08 09

more than 30% of the total strain energy

for in-plane shear loading (shear-12).

Second, for typical volume fractions,

interaction energy increases with

=1
(V8]
T

4

m
¥

Fiber volume fraction

Figure 3: Variation of interaction energy with fiber volume fraction
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increasing volume fraction. Finally, transversesten (tension-22) and transverse shear (sheark2gy a peak at a
fiber volume fraction of about 0.65, very closeypical fiber volume fractions in aerospace-gradmposites. This
behavior can be understood from stress plots d®\4E with a fiber volume fraction of 0.6. In casetefision-11,
shown in Fig. 4a, the stress distribution is umifan each constituent throughout the structure.sTinuthis load
case strain fluctuations are minimal. Equation®) @nd (20) show thatb; and ®,, are proportional to strain

5,511 (MPa) S, 512 (MPa)
(Avg: 75%) (Avg: 75%)
+2.350e+02 +4.366e+00
B 2is6er02 B +4014e+00
+1.962e+02 +3.661e+00
+1.768e+02 +3.308e+00
+1.575e+02 +2.956e+00
+1.381e+02 +2.603e+00
+1.187e+02 +2.251e+00
i +9.931e+01 +1.898e+00
~ +7.992e+01 I +1.546e+00
+g~??ge+8} +1.193e+00
+4.116e+ +8.405e—01
l +2.178e+01 I +4.879e—01
+2.399e+00 +1.354e—-01
2 2
3 3
(b)
S, 522 (MPa) S,523 (MPa)
(Avg: 75%) (Avg: 75%)
+7.373e+00 13‘8??‘*188
+6.8116+00 . 917¢
. 162500400 +2.749e+00
+5.688e+00 +2.581e+00
+5.127e+00 +2.414e+00
+4.565e+00 +2.2466+00
+4.004e+00 +2.078e+00
+3.442e+00 +1.910e+00
[ | 1+1742e+00
+2.881e+00
+1.5742+00
+2.320e+00
+1.406e+00
+1.758e+00
+1.238e+00
+1.197e+00
+6.35T1e—01 +1.070e+00
2 2
3 3

(d)

Figure 4: (a) Stressplot for load casetension-11 (b) Stressplot for load case shear-12 (c) Stressplot for load
casetension-22 (d) Stressplot for load case shear-23
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fluctuation (£), which in turn gives rise to stress fluctuati¢ain the constituent. Since there are minimal stress
(strain) fluctuations in this load case; and ®,, are almost zero for this load case. Consequeh#yiriteraction

energyAU is also zero which is verified by the plot.
In case of shear-12, shown in Fig. 4b, the streswif) fluctuation is largest. Consequently th&esriaction

energy is maximum for this

case as seen from the plot. This

is of vital importance because

this peak of interaction energy 0.7 - T T T T T

occurs roughly around the Distribution of strain

commonly used fiber volume . .
fraction of 0.60. In the load 0.6} in the composite

cases tension-22 and shear-23,
shown in Fig. 4c and Fig. 4d,
respectively, the stress
fluctuations are larger than
tension-11 and so they have
interaction energy higher than
tension-11. Figure 5 shows the
distribution of strain in load
cases shear-12, tension-22 and
shear - 23. It can be seen that
the distribution of strain in
load case shear-23 is smaller
than shear-12 but larger than
that in load case tension-22,
consequently it has an
interaction energy less than 0.1

load case shear-12 but more ' P e
than tension-22 which is ( Ao o5
verified by the plot in Fig. 3. It 0 — . . : :

can also be seen that out of the 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
three load cases that have
interaction energy, tension-22
has the smallest distribution of  Figure5: Probability distribution function for strainsfor different load cases
strain and so it has the smallest

interaction energy.

-@ Shear—12
-m Shear—23
Tension—22

< S =
() (S n
T T T

pdf of strain

I
o
T

Strain

B. Variation of interaction energy with matrix modulus

In order to investigate the variation of the intgi@n energy with matrix modulus, the matrix modulvas
varied from 1% to 120% of the fiber-direction fibmodulus. Results were obtained for four fiber wadufractions
(0.05, 0.25, 0.60, and 0.85). The interaction epndrgction(AU /U) was plotted as a function of the matrix

modulus. Figure 6 shows the variation of inte@ttenergy with matrix modulus for the four uniqoad cases.
Fig. 6a shows the variation of interaction energihwinatrix modulus in load case tension-11. Fos thad case, the
interaction energy for all volume fractions is rigifile. For the other three load cases, shownign&b-d, a general
trend is observed: an initial increase in matrixdulus results in a decrease in interaction enargly a minimum
is reached, after which additional increase in matnodulus results in an increase in interactioergy. The
minimum of the interaction energy occurs when #levant fiber and matrix stiffnesses are the cko$as the load
case in the transverse direction, shown in Fig. tBb, interaction energy reaches a minimum whenntlagrix
modulus is 5% of the fiber-direction fiber modulasyresponding to a matrix modulus of 11.75 GP4dckwvis close
to the fiber modulus in the transverse directionldf GPa. For a load case of shear-12, shown in@€igthe
interaction energy reaches a minimum when the matwdulus is 30% of the fiber-direction fiber modsi|
corresponding to a matrix shear modulus of 26.34,Gich is close to the fiber shear modulus irdik2etion of
28 GPa. For a load case of shear-23, shown ingéigthe interaction energy reaches a minimum whenrtatrix
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Figure5: (a) Variation of interaction energy with matrix modulusin load casetension-11 (b) Variation of interaction
energy with matrix modulusin load case tension-22 (c) Variation of interaction energy with matrix modulusin load
case shear-12 (d) Variation of interaction energy with matrix modulusin load case shear-23
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modulus is 5% of the fiber-direction

fiber modulus, corresponding to a 0.5 i i .
matrix shear modulus of 4.38 GPa, Variation of AU with 0
which is close to the fiber shear 0.45+ 1
modulus in 23-direction of 5.6 GPa. ® tan 1(012/622)
Thus in general, it can be concluded 0.4t A a0’ (0))/0);)
that, for near iso-stress loadings, the m tan"! (o,,/03;)
interaction energy is proportional to 0.35 #» tan’' (0,,/0,,)
the difference in the fiber and matrix ¢ tan’ (o,,/0,,)
modulus in the loading directions. 0.3 T
Q
S 02% oi!‘ ‘!3‘.. -

C. Variation of interaction energy
with biaxial loading

In reality, a  composite
microstructure is seldom subjected to
uniaxial stresses and so it is
important to study the behavior of
interaction energy under multiaxial
load states. Fig. 7 shows the
variation of interaction energy under 0L o - - R
five types of biaxial loadings: 0 45 90 135 180
O3 =033, 012702, 0127023,
0y, — 0,3 and lastly,0,;—05,.

As discussed in Sections A and
B, the interaction energy for tensile
loading in the 1-direction is negligible. Thus itllwiot contribute to the interaction energy of thecond uniaxial
load applied in the fiber direction. The fiber vizla fraction and the matrix modulus were kept corisia 0.6 and
4.0 GPa, respectively. The biaxial load is represkiy the radius of a circle as shown in Fig82is the angle
made by the radius of the circle with the x-axidalihis varied from 0° to 180° so that the effecb@xial loding on
the interaction energy could be quantified. Unddriaxial shear loading in the 12- and 13-directjoh<an be
observed that the interaction energy does not ébnog remains constant at 27% of the total stragrgy. When
the RVE was subjected to@,, — 03 biaxial load the interaction energy reached a mimmat 45°. This is because
at these two angles, the two stresses are eqealctowhich results in uniform distribution of streiand stresses in
the constituents thereby producing negligible imtéion energy shown in Fig. 7.

In the remaining four casesy, — 0,3, 015 — 013, 015 — O,y , Oy3— 05, the maximum interaction energy occurs
at 90°, which corresponds to a pure shear loadihgs result is remarkableny additional applied transverse load
reduces the interaction energy that would be coetbitased on the most significant shear componemt. T
interaction energy can thus be readily boundedviayuating only a small number of load states.

Figure 7 : Variation of interaction energy with biaxial loads.

D. Contribution of Matrix to the Interaction Energy

Interaction energy is a result of material inhgeweity, which gives rise to strain fluctuations time
constituents. In a two phase composite consistfrfdper and matrix phase, both the fiber and mataxtribute to
interaction energy as seen in Eq. (10). The matradulus was kept constant at 2.35 GPa and contibaf the
matrix to interaction energy was computed. Fig.h®ves the matrix contribution to interaction enengptted
against fiber volume fraction. The results are ndmlle: upto typical fiber volume fractions, the tlhaaccounts
for vast majority of interaction energy. For a coamty used fiber volume fraction of 0.6, the matciantributes
almost entirely (more than 99%) to the interactioergy of the composite for shear loading in tRAalitection.
Even for load cases tension-22 and shear-23, matrigibution to interaction is about 90% . Thisutk if of vital
importance since it allows us to alltogether neigtee interaction energy of the fiber and focusnoodifying the
constituent based matrix failure theory.
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V. Summary and Conclusions L5

Firbrcl)us_ compositgs I?\re rapidly Variation of matrix contribution to AU
supplanting conventional homogenous .
materials like metals in many 125 w.r.t fiber volume fraction

industries including aerospace,
automobile, marine and sports since
they are not only lightweight and
strong but also chemical and corrosion
resistant. Thus precise estimation of
composite  properties like yield
strength, fracture strength, and
lifetime has become important.
Accurate failure prediction is therefore
critical in our efforts towards 0.5 1
exploiting the promising advantages @ Tension—11
offered by composite materials. # Tension—22
Although volume average constitutent 0.25 : gﬁgzl;g
properties (stresses and strains) may

not account for all the strain energy of
the composite, they are the critical 0 ' . : . : . . '

guantities that drive composite failure 0 01 02 03 04 05 06 07 0809

and are required for genuine physics- Fiber volume fraction

based modeling of compositda. this

study, an expression was derived to

quantify the interaction energy and its Figure8: Variation of contribution of matrix to interaction energy
dependence on fiber volume fraction with fiber volume fraction

and material properties under different

types of loading conditions was examined in hofesugmenting the use of volume average constitgeattities.
Three parametric studies were performed and tleeaotion energy was computed. It was found thatrttezaction
energy is maximum for composite shear loading @ ttansverse direction (shear-12) because of maxistuain
fluctuations. For typical aerospace-space gradeposites, at a common fiber volume fraction of @, interaction
energy is about 30%. Moreover, for such systemgrixnia the major contributor to interaction enerdiyteraction
energy is directly related to material inhomoggneind it is always minimum when the relevant filbaed matrix
stiffnesses are closest. Interaction energy remegrstant under biaxial shear loading. For trarsssdyiaxial
loading, interaction energy is minimum when botk thansverse loads are equal and is maximum faiden
compression loading.

Failure in composite materials is ultimately a feséiconstituent failure. Consequently, micromeaica-based
failure theories often utilize volume average cineht quantities to apply failure criteria to cttvents directly.
For accurate failure predictions, any failure thyetitat employs volume average constituent quastie failure
prediction must incorporate interaction energy.si8tudy has shown that regardless of fiber voluaetibn, matrix
modulus, or loading conditions, the matrix is themihant contributor to interaction energy. Thisutess
remarkable because efforts may be channeled towaadisx failure augmentation for superior failureegiction.
This study not only elucidates the causes and @attiinteraction energy but it also takes us oep sfoser to
realizing the goal of designing with composite engtls with the confidence used in designing wittrentraditional
materials.
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