USE OF VOLUME AVERAGE STRESSES TO PREDICT COMPOSITE FAILURE

Kedar A. Malusare, Dr. Ray S. Fertig III, University of Wyoming.

4/9/2013

54th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Boston 2013.

Application of composite materials

(2/25)

(3/25)

Overview

- 1. Types of failure modeling techniques (Two)
- 2. Missing strain energy 'Interaction Energy'
- 3. FEA model
- 4. Results of three parametric studies
- 5. Conclusions

Multiscale micromechanical modeling (6/25)

(8/25)

Strain energy comparison

$$U = \frac{1}{2} \sigma_{ij}{}^{c} \varepsilon_{ij}{}^{c} V_{c}$$

$$U_{f} = \frac{1}{2} \sigma_{ij}{}^{f} \varepsilon_{ij}{}^{f} V_{f} \qquad U_{m} = \frac{1}{2} \sigma_{ij}{}^{m} \varepsilon_{ij}{}^{m} V_{m}$$

$$U > U_{f} + U_{m}$$

$$U = (U_{f} + U_{m}) + \Delta U$$

where ΔU is the missing energy.

(9/25)

Interaction energy

$$U_f = \frac{1}{2} \sigma_{ij}^{\ f} \varepsilon_{ij}^{\ f} V_f + \Phi_f V_f$$
$$U_m = \frac{1}{2} \sigma_{ij}^{\ m} \varepsilon_{ij}^{\ m} V_m + \Phi_m V_m$$

 $\Delta U = \Phi_f V_f + \Phi_m V_m$

where ΔU is the 'Interaction Energy'.

UNIVERSITY OF WYOMING

(10/25)

Interaction energy

$$\Phi_{f} = \frac{1}{2} \int_{V_{f}} \widetilde{\sigma}_{ij}^{f} \widetilde{\varepsilon}_{ij}^{f} dV_{f} \qquad \Phi_{m} = \frac{1}{2} \int_{V_{m}} \widetilde{\sigma}_{ij}^{m} \widetilde{\varepsilon}_{ij}^{m} dV_{m}$$
$$\Phi_{f} = \frac{1}{2} \int_{V_{f}} C_{ijkl} \widetilde{\varepsilon}_{ij}^{f} \widetilde{\varepsilon}_{kl}^{f} dV_{f} \qquad \Phi_{m} = \frac{1}{2} \int_{V_{m}} C_{ijkl} \widetilde{\varepsilon}_{ij}^{m} \widetilde{\varepsilon}_{kl}^{m} dV_{m}$$

Assuming transverse isotropy and expanding in *i*,*j*,*k* and, *l* yields

(11/25)

Expression for Interaction energy

$$\Phi_{f} = \frac{1}{2} \begin{bmatrix} C_{11}^{f} \left\langle \left(\widetilde{\varepsilon}_{11}^{f} \right)^{2} \right\rangle + C_{22}^{f} \left\langle \left(\widetilde{\varepsilon}_{22}^{f} \right)^{2} \right\rangle + C_{33}^{f} \left\langle \left(\widetilde{\varepsilon}_{33}^{f} \right)^{2} \right\rangle + 2C_{12}^{f} \left\langle \widetilde{\varepsilon}_{11}^{f} \cdot \widetilde{\varepsilon}_{22}^{f} \right\rangle + 2C_{13}^{f} \left\langle \widetilde{\varepsilon}_{11}^{f} \cdot \widetilde{\varepsilon}_{33}^{f} \right\rangle + \\ 2C_{23}^{f} \left\langle \widetilde{\varepsilon}_{22}^{f} \cdot \widetilde{\varepsilon}_{33}^{f} \right\rangle + C_{12}^{f} \left\langle \left(\widetilde{\gamma}_{12}^{f} \right)^{2} \right\rangle + C_{13}^{f} \left\langle \left(\widetilde{\gamma}_{13}^{f} \right)^{2} \right\rangle + C_{23}^{f} \left\langle \left(\widetilde{\gamma}_{23}^{f} \right)^{2} \right\rangle \end{bmatrix}$$

$$\Phi_{m} = \frac{1}{2} \begin{bmatrix} C_{11}^{m} \left\langle \left(\widetilde{\varepsilon}_{11}^{m}\right)^{2} \right\rangle + C_{22}^{m} \left\langle \left(\widetilde{\varepsilon}_{22}^{m}\right)^{2} \right\rangle + C_{33}^{f} \left\langle \left(\widetilde{\varepsilon}_{33}^{m}\right)^{2} \right\rangle + 2C_{12}^{m} \left\langle \widetilde{\varepsilon}_{11}^{m} \cdot \widetilde{\varepsilon}_{22}^{m} \right\rangle + 2C_{13}^{m} \left\langle \widetilde{\varepsilon}_{11}^{m} \cdot \widetilde{\varepsilon}_{33}^{m} \right\rangle + 2C_{23}^{m} \left\langle \widetilde{\varepsilon}_{22}^{m} \cdot \widetilde{\varepsilon}_{33}^{m} \right\rangle + C_{12}^{m} \left\langle \left(\widetilde{\gamma}_{12}^{m}\right)^{2} \right\rangle + C_{13}^{m} \left\langle \left(\widetilde{\gamma}_{13}^{m}\right)^{2} \right\rangle + C_{23}^{m} \left\langle \left(\widetilde{\gamma}_{23}^{m}\right)^{2} \right\rangle \end{bmatrix}$$

$$\Delta U = \Phi_f V_f + \Phi_m V_m$$

How does it depend on <u>fiber volume fraction</u>, <u>properties of the materials</u> or <u>applied load state</u>?

UNIVERSITY OF WYOMING

(12/25)

FEA model

- Representative Volume Element (RVE) with hexagonal fiber packing.
- Fiber material Carbon

Three parametric studies:

- 1. Fiber VF varied from 0.05 to 0.85
- 2. Matrix modulus varied as function of fiber modulus
- 3. Five types of biaxial loads

Effect of fiber volume fraction on interaction energy 0.7 Variation of interaction energy (ΔU) Matrix modulus 1% (2.35 GPa) • with fiber volume fraction 0.6 Tension-11 Strongly dependent on the 0.5 Tension-22
Shear-12
Shear-23 loading 0.4 N/NV Maximum for shear-12 & 31.29 % negligible for tension-11 0.3 ■ For VF 0.6 *ΔU* is about 30% for 0.2 shear-12. 0.1 Why does ΔU vary with 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 fiber VF and load case ? Fiber Volume Fraction UNIVERSITY OF WYOMING

A closer look at the expression for interaction energy (14/25)

energy

(13/25)

Material inhomogeneity increases and decreases with fiber VF

$$\Phi = \frac{1}{2} \begin{bmatrix} C_{11} \langle \left(\tilde{\varepsilon}_{11} \right)^2 \rangle + C_{22} \langle \left(\tilde{\varepsilon}_{22} \right)^2 \rangle + C_{33} \langle \left(\tilde{\varepsilon}_{33} \right)^2 \rangle + 2C_{12} \langle \tilde{\varepsilon}_{11} \cdot \tilde{\varepsilon}_{22} \rangle + 2C_{13} \langle \tilde{\varepsilon}_{11} \cdot \tilde{\varepsilon}_{33} \rangle + \\ 2C_{23} \langle \tilde{\varepsilon}_{22} \cdot \tilde{\varepsilon}_{33} \rangle + C_{12} \langle \left(\tilde{\gamma}_{12} \right)^2 \rangle + C_{13} \langle \left(\tilde{\gamma}_{13} \right)^2 \rangle + C_{23} \langle \left(\tilde{\gamma}_{23} \right)^2 \rangle \end{bmatrix}$$

- $\Phi = f(\tilde{\varepsilon}) = f(\tilde{\sigma})$ and $\Delta U = \Phi_f V_f + \Phi_m V_m$
- So $\Delta U = f(\tilde{\varepsilon}) = f(\tilde{\sigma})$

Q1 : Negligible $\tilde{\varepsilon}/\tilde{\sigma}$ in Tension-11

(16/25)

(18/25)

Effect of material properties on interaction energy

(21/25)

Effect of biaxial loading on interaction energy

0.8

- $E_m = 1.702\% E_f = 4.0 GPa$
- For σ₁₂ σ₁₃ interaction energy is constant
- For σ₂₂ σ₃₃ interaction energy is minimum at 45° and peaks at 135°
- For remaining three cases interaction energy is maximum at an angle of 90°

(22/25)

Major contributor to interaction energy

Stress plot of a real microstructure for load case shear-23

(24/25)

Interaction energy of a real microstructure

Load case	Missing energy
Tension-11	4.043e-5
Tension -22	0.144
Tension - 33	0.154
Shear-12	0.365
Shear-13	0.370
Shear-23	0.168

Conclusions

(25/25)

- Interaction energy is in the range of <u>30-40%</u> for shear loading.
- All this interaction energy is due to the matrix
- Need to augment only the matrix failure theory with this energy

UNIVERSITY OF WYOMING

Thank You.

Effect of material properties on interaction energy

Material properties

		<u>Volume fraction</u> <u>variation</u>	<u>Matrix modulus</u> <u>variation</u>	<u>Biaxial</u> loading
Material	Fiber	Matrix	Matrix	Matrix
Material type	Transversely isotropic	Isotropic	Isotropic	Isotropic
$E_{11}(GPa)$	235.0	$0.01E_{11}$ (2.35)	$0.01E_{11}$ to $1.2E_{11}$	4.0
$E_{22}(GPa)$	14.0	$0.01E_{11}$ (2.35)	$0.01E_{11}$ to $1.2E_{11}$	4.0
<i>G</i> ₁₂ (<i>GPa</i>)	28.0	0.8769	Varies with matrix modulus	1.493
ν_{12}	0.2	0.34	0.34	0.34
ν_{23}	0.25	0.34	0.34	0.34

References

 Sun, C. T., and Vaidya, R. S. "Prediction of composite properties from a representative volume element," *Composites Science and Technology* Vol. 56, No. 2, 1996, pp. 171-179. doi: 10.1016/0266-3538(95)00141-7

UNIVERSITY OF WYOMING

	Fiber	Matrix
Material type	Transversely isotropic	Isotropic
$E_{11}(GPa)$	210.9	2.723 (1.29% <i>E</i> ₁₁)
$E_{22}(GPa)$	16.95	2.723 (1.29% <i>E</i> ₁₁)
G ₁₂ (GPa)	18.09	0.8769
v_{12}	0.247	0.323
ν_{23}	0.197	0.323

Material properties of the real microstructure

Matrix failure theory

$$B_t \{I_t\}^2 + B_{s1}I_{s1} + B_{s2}I_{s2} = 1$$

Where

$$I_{t} = \frac{\sigma_{22m} + \sigma_{33m} + \sqrt{(\sigma_{22m} + \sigma_{33m})^{2} - 4(\sigma_{22m}\sigma_{33m} + \sigma_{23m}^{2})}}{2}$$

$$I_{s1} = \sigma_{12m}^{2} + \sigma_{13m}^{2}$$

$$I_{s2} = \frac{1}{4}(\sigma_{22m} - \sigma_{33m})^{2} + \sigma_{23m}^{2}$$

$$\sum_{k=1}^{2} \frac{1}{4}(\sigma_{22m} - \sigma_{33m})^{2} + \sigma_{23m}^{2}$$

$$\sum_{k=1}^{2} \frac{1}{4}(\sigma_{22m} - \sigma_{33m})^{2} + \sigma_{23m}^{2}$$

1. A COMPUTATIONALLY EFFICIENT METHOD FOR MULTISCALE MODELING OF COMPOSITE MATERIALS: EXTENDING MULTICONTINUUM THEORY TO COMPLEX 3D COMPOSITES, Ray S. Fertig, III, Firehole Technologies.

